

Biological, Physical, and Chemical Characteristics of the Cloquet River from Indian Lake to Island Lake, 2000 - 2001

A Joint Effort of the 1854 Authority and the Fond du Lac Division of Resource Management

Brian D. Borkholder¹, Andrew J. Edwards², and Carlye A. Olson²

¹Fond du Lac Resource Management 1720 Big Lake Road Cloquet, MN 55811 218-879-8004 ² 1854 Authority Airpark Square
4428 Haines Road
Duluth, MN 55811-1524
218-722-8907

Fond du Lac Division of Resource Management, Technical Report # 36

1854 Authority, Biological Services Division, Technical Report # 02-06

August 2002

INTRODUCTION

The Cloquet River runs through a relatively pristine area of northeastern Minnesota. It begins as a small stream and flows generally southwest approximately ninety-nine miles to its mouth at the St. Louis River. Several lakes and tributaries, including Fish Lake and Boulder Lake Reservoirs, feed the river along its route. The river is impounded, creating the Island Lake Reservoir, approximately 29 miles from the St. Louis River. The Cloquet River supports a variety of wildlife including numerous fish species and is surrounded by forest for most of its length. The river has a long history of use and is currently utilized for recreation by fishermen, canoeists, hunters, and campers.

The Bois Forte, Grand Portage, and Fond du Lac Bands of Lake Superior Chippewa retain off-reservation treaty rights within the 1854 Ceded Territory in northern Minnesota. The 1854 Authority and Fond du Lac Resource Management Division work to protect and enhance the natural resources of the 1854 Ceded Territory for the three Bands. Cooperating with local Minnesota Department of Natural Resources (DNR) offices, the 1854 Authority and Fond du Lac identify priority natural resource projects for areas within the Ceded Territory. One goal is to assist in the completion of necessary surveys that have been postponed by the DNR due to budget and staff limitations. The Cloquet River surfaced as a priority because a survey had not been done for thirty years and updated information about this resource was needed.

The Minnesota Department of Conservation (now DNR) previously surveyed the Cloquet River between 1942-1945. The results of that initiative were included in the Biological Survey and Fishery Management Plan for the Streams of the St. Louis River by Dr. J. Moyle and W. Kenyon in 1947. Determination of present and potential trout streams was the emphasis of that survey. The Minnesota Department of Conservation conducted a second biological survey during the summers of 1964-1967. A report entitled The Cloquet River: Its Ecology and Recreation was completed by Richard Hassinger in March 1967. The study collected information on the physical, chemical, and biological conditions of the Cloquet River to provide a basis for fish management and evaluate recreational potential (Hassinger 1967). In addition, A Management Plan for the Cloquet River was produced by the Minnesota DNR in October 1978 (preliminary draft). That document was developed in cooperation with the Cloquet River citizen's advisory board. The 1854 Authority and the Fond du Lac Resource Management Division completed a report entitled "Biological, Physical, and Chemical Characteristics of the Cloquet River from the Island Lake Dam to the St. Louis River, 1996-1998" (Borkholder et al. 1999). The report summarizes a survey conducted to collect physical, chemical, and biological information necessary to implement management plans and/or special designations by the Minnesota DNR. The study area included the portion of the Cloquet River from the Island Lake Reservoir downstream to its mouth at the St. Louis River. Phase I of the project was to identify and map the physical characteristics of this 28.9 mile stretch. Information gathered included locations and features of tributaries, beaver lodges, erosion sites, access sites, shoreline development, etc. In addition, channel width, maximum river depth, and water temperature were recorded at the location of each noted feature. Phase I of the survey was completed in the summer of 1996. Features documented in Phase I were incorporated into the 1854 Authority's Geographic Information System and a complete listing of those features can be found in Appendix 1 of the 1999 report (Borkholder et al. 1999). Phase II consisted of establishing sampling stations and collecting detailed

data from each station. Water quality measurements and water temperature were recorded. Vegetation, aquatic invertebrates, and fish were sampled and identified. It should be noted that a survey of the fish population was of importance when conducting the Cloquet River project. Anecdotal evidence suggested that brook and brown trout reside in the river and/or its tributaries. Documentation of the makeup of the fishery was important for possible future management.

The material covered in this report represents a follow up to the 1999 report. In general, the 1854 Authority and Fond du Lac Resource Management Division followed the same procedures as outlined in the 1999 report, but worked on a section of the river from Indian Lake to Island Lake Reservoir.

GENERAL SITE DESCRIPTION

Watershed CharacteristicsWatershed Characteristics

The Cloquet River watershed (Figure 1) drains approximately 750 miles ² in Lake and St. Louis counties. Drainage area above the Island Lake Reservoir (downstream boundary of this project) is about 572 miles ². The Cloquet River generally flows southwest from its origin at Cloquet Lake to the St. Louis River, which in turn flows into Lake Superior. The watershed contains about 70 streams, totaling 423 miles in length, and about 164 lakes and marshes (Hassinger 1967). Watershed elevations range from 1,220 to 1,925 feet above sea level. Glacial action is responsible for most of the geology of the region. Few springs are present in the watershed, primarily due to the underlying rock and glacial soil layers. As a result, nearly all of the water comes from surface drainage. Accordingly, stream flows below the Island Lake Dam vary with rainfall, snowmelt, and manipulations at four power storage reservoirs operated by Minnesota Light and Power Company. However, upstream of the Island Lake Reservoir is about 3.2 feet/mile. Hassinger (1967) and DNR (1978) provide historical settlement information and an extensive description of soil types, geology, and forest cover.

River Stations

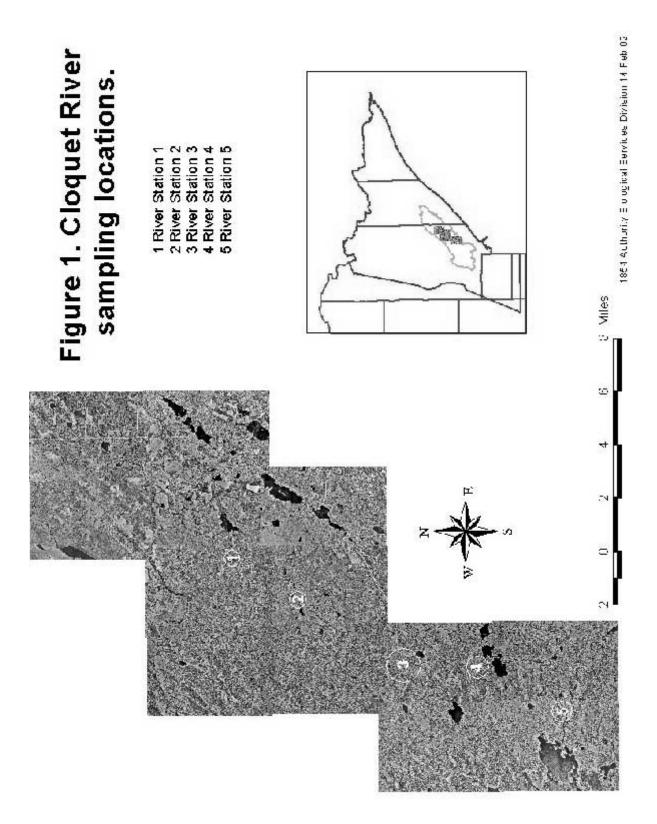
Five river sampling stations were established on the Cloquet River in winter 2000. River stations (RS) were chosen for their variety of habitat, location, and potential for sampling. All established stations were thought to be representative of the Cloquet River. Locations of river stations used for sampling are identified in Figure 1.

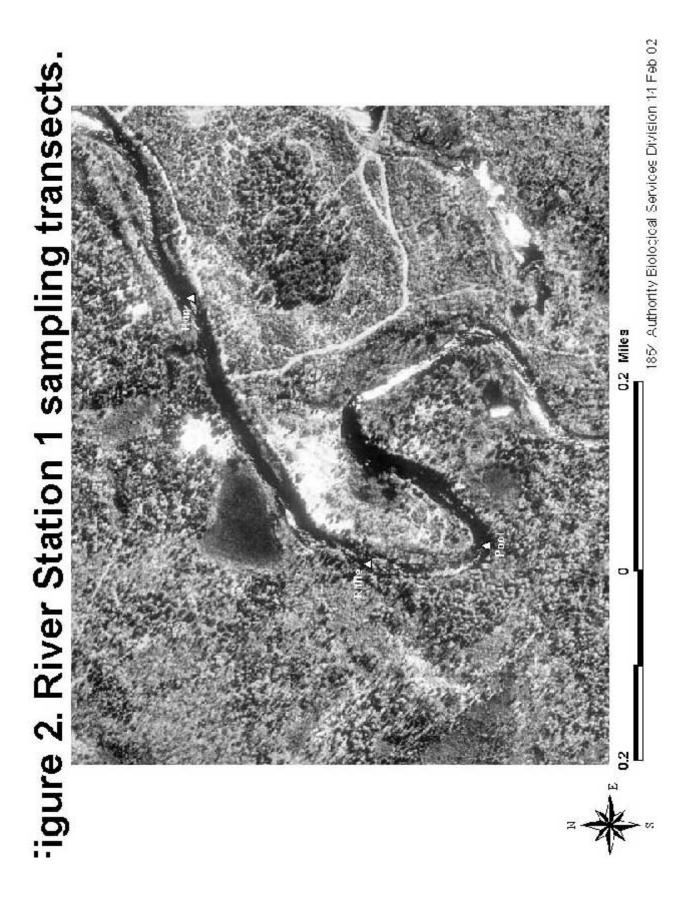
Within each of the five river stations, individual transects were established. A transect consisted of a single habitat type that was identified as a pool, riffle, or run. The *Minnesota Stream Survey Manual* (Sternberg 1978) was used as a guide for definitions of habitat types:

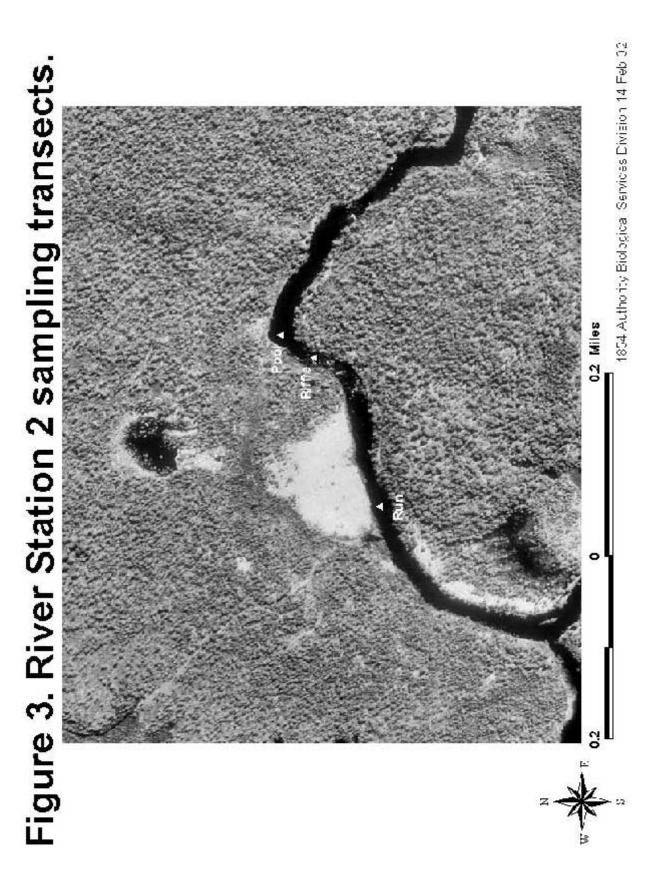
pool

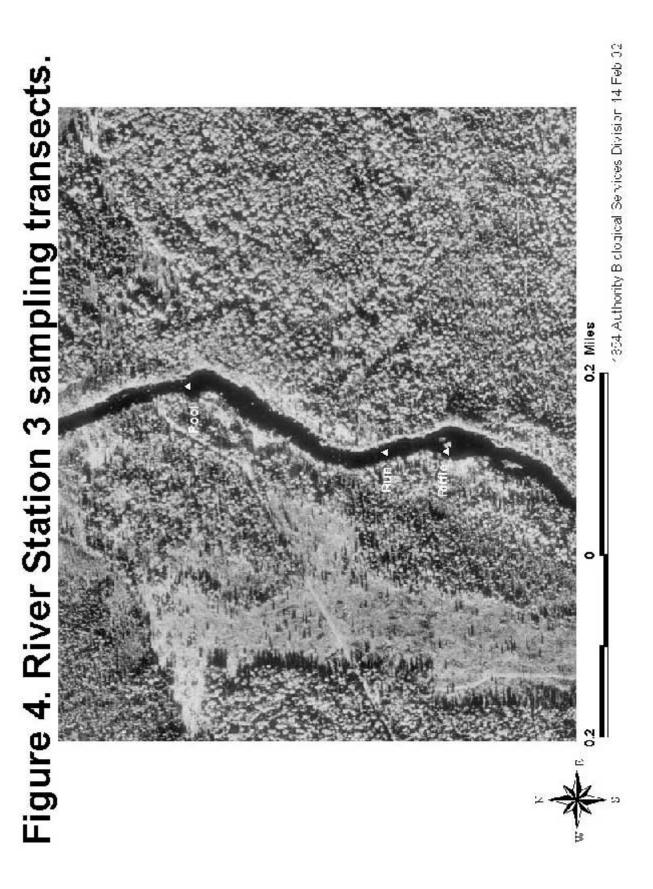
- has low water velocity, usually <1cfs at normal summer flows
- smooth surface on calm days
- shallow or deep
- fine bottom materials such as silt, sand, and small gravel.

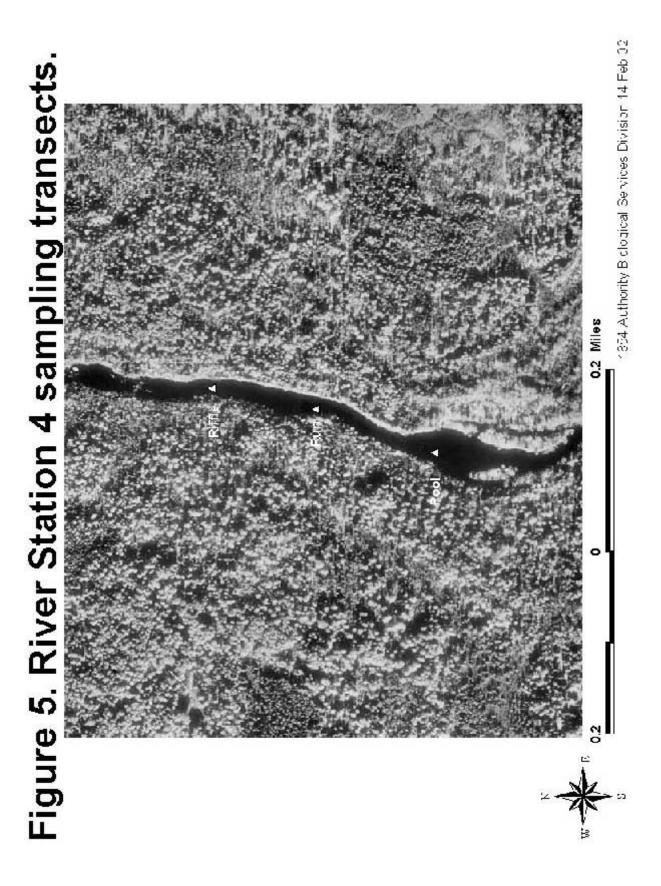
riffle	 has higher water velocities, usually >1cfs at normal summer flows shows at least slight turbulence on the surface on a calm day two feet or less in depth coarse bottom materials such as gravel, rubble, and boulder 						
	- rapids are more turbulent than riffles and usually have greater velocities						
run	 has a velocity of >1cfs at normal summer flows is usually deeper than two feet 						

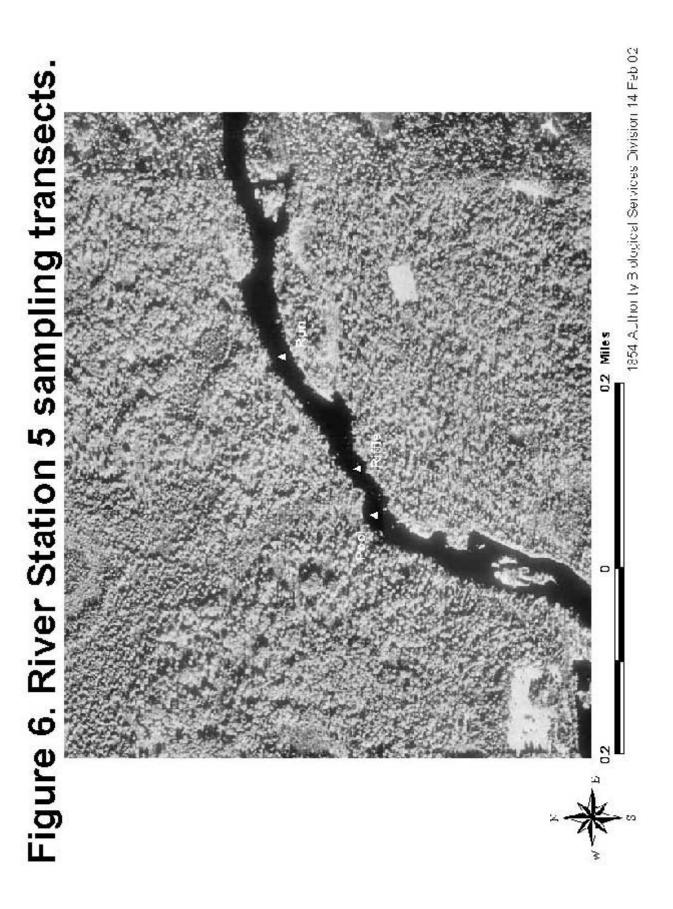

Each river sampling station included three transects (one pool, one riffle, one run) (Figures 2-6). Physical characteristics of each transect within the five river stations, including stream width, mean water column velocity (MWCV) and substrate types, are outlined in Table 1. Position of each sampling transect (latitude/longitude) is provided in Table 2.


WATER QUALITY


Water quality measurements were recorded at each transect. Measurements were taken once at each site in August 2001. Information gathered included pH, dissolved oxygen (mg/L), conductivity (micromho), total dissolved solids (ppm), and temperature (°Celsius). A complete list of recorded measurements is presented in Table 2.


Effort was made to not disturb the river bottom before recording measurements. An Accumet Portable AP5 pH meter was used to record pH. The meter was calibrated prior to use with three buffer solutions. Measurements were taken near the water surface and reported pH values have an accuracy of ± 0.1 . Dissolved oxygen was measured using a YSI Model 52 dissolved oxygen meter with a YSI Model 5718 probe. The probe was prepared according to manufacturer instructions and the meter was calibrated daily in air and adjusted for site elevation. Dissolved oxygen was measured at a water depth of one foot and recorded values have an accuracy of $\pm 0.1\%$ of saturation value. Water conductivity and total dissolved solids (TDS) were measured with a Fisher Scientific digital conductivity meter. The instrument was calibrated according to manufacturer instructions and measurements were taken near the water surface.


Analyses of water quality measurements suggest no significant difference between readings in each habitat type (pool, riffle, run) for all categories. The average pH for all measurements was 7.79 and recorded values did not appear to vary significantly across the different river stations. The dissolved oxygen content averaged 6.57 mg/L. The average conductivity was 96.7 micromhos and the average TDS was 64.54 ppm for all measurements. The limited water quality measurements taken indicate nothing out of the ordinary and are well within the bounds required for most fish and invertebrate species. These values continuously change with the dynamic nature of the Cloquet River, affected by the chemical and physical nature of the river and watershed, the amount of water flow, and the time of year.



	Stream	MWCV	Organic Substrate Composition (%)			Inorganic Substrate Composition (%)					
	Width (m)	(m/s)	1	2	3	4	5	6	7	8	9
RS1											
Pool	35	0.00	50			8	32	5	2.5	2.5	
Riffle	20	0.98	15				42	38	5		
Run	20	0.29	10				63	22	5		
RS2											
Pool	60	0.00	20	15	3	45	7		3	7	
Riffle	28	1.05					5	5	70	15	5
Run	25	0.25	5			5	62	5	14	9	
RS3											
Pool	40	0.00			20	5	35	15	15	10	
Riffle	50	1.03					15	40	40	5	
Run	40	0.35					80	10	5	5	
RS4											
Pool	70	0.00					65		20	15	
Riffle	25	1.74						10	60	30	
Run	30	0.30					30	10	40	20	
RS5											
Pool		0.00	15			4	21	13	13	34	
Riffle	45	0.87	5				10	57	14	14	
Run	30	0.27					50	40	10		

each river station sampled in the Cloquet River, 2001. 1 = detritus, 2 = muck, 3 = clay, 4 = silt, Table 1. Stream width, mean water column velocity (MWCV), and substrate composition at

						Total Dissolved	
				Dissolved Oxygen	Conductivity	Solids	Temperatur
Station	Lat. / Long.	Date	pН	mg / L	μmhos	ppm	°Celsius
RS1							
Pool	N 47° 12' 13.017" W -91° 56' 42.809"	10 August	7.74	5.88	101.8	66.1	20.7
Riffle	N 47° 12' 19.688" W -91° 56' 43.618"		7.68	6.90	99.9	66.7	21.3
Run	N 47° 12' 29.441" W -91° 56' 22.144"		7.68	6.85	101.3	66.8	21.0
RS2							
Pool	N 47° 10' 26.354" W -91° 58' 26.405"	8 August	8.06	4.25	103.8	67.9	25.6
Riffle	N 47° 10' 24.040" W -91° 58' 28.250"		7.15	6.13	99.3	67.3	25.6
Run	N 47° 10' 20.808" W -91° 58' 40.481"		8.46	6.10	99.7	67.5	26.1
RS3							
Pool	N 47° 06' 55.230" W -92° 01' 29.150"	14 August	7.89	6.13	87.3	58.2	19.0
Riffle	N 47° 06' 40.334" W -92° 01' 34.104"		7.688	6.98	86.7	57.9	19.6
Run	N 47° 06' 43.874" W -92° 01' 35.376"		7.81	7.43	85.2	57.5	19.5
RS4							
Pool	N 47° 04' 23.186" W -92° 02' 03.681"	7 August	7.71	6.25	105.9	69.7	27.2
Riffle	N 47° 04' 35.840" W -92° 01' 58.250"		7.73	6.63	102.8	68.9	26.1
Run	N 47° 04' 29.971" W -92° 02' 00.453"		7.84	6.12	78.9	52.6	26.7
RS5							
Pool	N 47° 01' 45.045" W -92° 03' 56.530"	14 August					
Riffle	N 47° 01' 44.919" W -92° 03' 52.569"		7.90	8.09	99.8	68.3	22.3
Run	N 47° 01' 48.924" W -92° 03' 43.263"		7.79	8.27	101.6	68.2	23.0

TEMPERATURE

One of our goals during the study of the lower Cloquet from 1996-1998 was to investigate the potential of several tributaries to serve as thermal refuges for trout. To help answer that question we utilized temperature data loggers to record temperature profiles of both the main stem of the Cloquet River and the tributaries in question. Since this was not a goal of this study, we did not get temperature profiles of either the river itself or tributaries. However, we did record both tributary temperature and river temperature during our initial scouting period in 2000. Those temperatures can be found in Appendix 1 and may be useful in the future if investigators are interested in thermal refuge sites for trout or other species.

AQUATIC AND TERRESTRIAL MACROPHYTES

At each station and transect, the in-stream and bank plant communities were identified. Table 3 lists the plant species identified within the stream, while Table 4 lists the plant species found on the bank. Both tables are located at the end of this report.

Following are a few notes related to some of the plant species identified: The following plants are sensitive to human disturbance as described by Gernes and Helgen (1999):

Plant Species	Common Name	RS Locations
Carex stipata Muhl.	Common Fox Sedge	2
Glyceria striata (Lam.) A. Hitchc.	Fowl Mannagrass	1, 2, 3, 4, 5
Iris versicolor L.	Northern Blue Flag Iris	3, 4
Scutellaria galericulata L.	Marsh Skullcap	3
<i>Spirea alba</i> DuRoi	Meadowsweet	1, 2, 3, 5

The following plants are adversely affected by stressors such as excessive siltation, hydrologic alteration, and nutrient enrichment (Gernes and Helgen 1999):

Plant Species	Common Name	RS Locations
Carex intumescens	Shining Bur Sedge	2
Carex psuedocyperus	False Bristly Sedge	2, 3, 4, 5
Carex rostrata	Beaked Sedge	1, 2, 3, 4, 5
Carex stipata	Common Fox Sedge	2, 3
Carex stricta	Common Tussock Sedge	3, 4

The following plants are intolerant of sedimentation (Waldrop and Brooks 1998):

Plant Species	Common Name	RS Locations		
Eupatorium maculatum L.	Spotted Joe-Pye Weed	1, 2, 3, 4, 5		
Onoclea sensibilis L.	Sensitive Fern	1, 2, 3, 4, 5		

Equisetum arvense L. (Field Horsetail), was found in stations 1 and 3, and is only slightly tolerant of sedimentation (Waldrop and Brooks 1998).

Sagittaria latifolia Willd. (Common Arrowhead), found in all five stations, contributes significantly to decreased biological oxygen demand (BOD) and increased dissolved oxygen (DO) in the water (Reddy et al. 1989).

Ceratophyllum demersum L. (Common Coontail), found in stations 1, 2, 3, and 4, is a hyperaccumulator of metals (Rai et al. 1995; and Zayed et al. 1998).

Cicuta maculata L. (Common Water Hemlock), found only in station 5, produces alkaloids and toxins that are highly poisonous to animals and humans (Voss 1996).

BIO-MONITORING

Diverse and abundant benthic macroinvertebrate and fish communities are normally indicative of high stream quality. Repeated sampling or comparisons to reference streams will often indicate changes in stream water and habitat quality (Michigan Department of Environmental Quality (MDEQ 1997). Biomonitoring and biosurvey techniques, such as the Rapid Bioassessment Protocols (RBPs) described by Barbour et al. (1999), are often used for detecting the effects and severity of pollution and other water quality problems on aquatic life. Aquatic surveys of the fish and invertebrate fauna may be used by managers to identify and prioritize water quality problems for further study and assessments.

There are many advantages for surveying the fish and invertebrate communities to assess water quality issues (Barbour et al. 1999):

- Fish and invertebrate communities reflect the overall ecological integrity of the river system.

- Biological communities integrate the effects of different environmental stressors, providing a broad measure of their aggregate impact.

- Routine monitoring of biological communities can be relatively inexpensive, particularly when compared to the cost of assessing toxic pollutants.

- The status of biological communities is of direct interest to the public as a measure of a pollution free environment.

- Fish and invertebrate communities may be the only practical means of evaluating the impacts of nonpointsource pollution that degrades habitat quality. Biosurveys focus on the two main components of any river system: macroinvertebrates and fishes. Bioassessments of benthic macroinvertebrates provides greater information than is available from other assessments, e.g. chemical assessments or toxicity testing of pollutants (Hove 1997). Benthic macroinvertebrate communities have been used for a variety of reasons (Barbour et al. 1999). Even in streams that lack diverse fish communities, benthic macroinvertebrates will usually be abundant. Sampling is relatively easy, and requires few people and inexpensive gear. Benthic macroinvertebrate communities are made up of species that constitute a broad range of trophic levels and pollution tolerances. Macroinvertebrates are relatively easy to identify to family; degraded conditions can often be detected with only a cursory examination of the benthic macroinvertebrate community. Invertebrates are particularly good indicators of localized conditions, because most have limited migration patterns. This makes invertebrate communities perfect for the assessment of site-specific impacts, i.e. upstream-downstream studies (Hove 1997). Most species have a complex life cycle of approximately one year or more, and will respond quickly to environmental stressors.

Assessing the fish communities in a biosurvey provides additional information (Barbour et al. 1999). While some invertebrate species respond quickly to environmental stressors, fish communities are good indicators of long-term effects and broad habitat conditions (Karr et al. 1986). Fish communities generally represent a variety of trophic levels (omnivores, herbivores, insectivores, planktivores, piscivores). Thus, they tend to integrate effects of lower trophic levels and are reflective of integrated environmental health. Fish are relatively easy to collect and identify to the species level in the field, and subsequently released unharmed. Environmental requirements of most fish are comparatively well known, allowing managers to make inferences concerning habitat quality based upon the fish community. And finally, assessing fish communities provides direct evaluation of "fishability" and "fish propagation", which emphasizes the importance of fish to anglers.

Benthic Macroinvertebrate Community

While we have data on the benthic macroinvertebrate community of the lower Cloquet River (Borkholder et al. 1999), no previous reports were found that addressed surveys of the benthic invertebrate community in the upper Cloquet River. For our survey, EPA Rapid Bioassessment Protocols were used as a guideline (Barbour et al. 1999). This protocol focuses on riffle / run habitats, though for this survey pool habitats were also included, as suggested by the MDEQ (1997).

At each sampling station, two kicknet samples were each taken from approximately a 1 m² area using a 1000 micron mesh kick net. Sampling was attempted in areas with cobble and gravel substrate, when available. Both samples were combined and preserved in alcohol for later identification in the lab. In addition, at each station, 18 rocks or pieces of wood were collected and sampled by handpicking each invertebrate observed. Rock collections were combined separate from the net samples, and preserved for later identification. Rock and wood samples allowed for the sampling of the scrapers and filtering collectors (Benke et al. 1984).

At the lab, each individual was identified to the family level, as per Hilsenhoff (1988). Subsampling was not used, as suggested by (Plafkin 1989) and Hilsenhoff (1987).

Plafkin (1989) and Barbour et al. (1999) report that riffle stations with relatively fast current and cobble /

gravel substrates have the most diverse invertebrate communities. Total abundance of benthic invertebrates sampled in riffle sections of each station is presented in Figure 7. A complete listing of all invertebrates sampled can be found in Appendix 2.

Analysis of the benthic macroinvertebrate community followed that of Plafkin et al. (1989), Barbour et al. (1999), Hilsenhoff (1977 & 1982), and the MDEQ (1997). Nine metrics were calculated, and are described as follows:

Total Family Richness: This metric is simply the total number of macroinvertebrate Families observed in each sample. This metric reflects the health of the benthic invertebrate community, and generally increases with increasing water quality, habitat diversity, and habitat suitability. Referred to by MDEQ (1997) as the **Total # of Taxa**, but which includes data collected from the pool stations.

EPT Family Richness: This index is the total number of distinct Families within theOrders Ephemeroptera, Plecoptera, and Trichoptera. This metric describes richness within the Orders that are generally considered to be pollution intolerant. MDEQ (1997) further breaks this metric down, and reports the number of Families observed within each Order.

Modified Family Biotic Index: This metric summarizes the pollution tolerance of the benthic community. Each Family is assigned a pollution tolerance value from 0 - 10, with 0 being intolerant and present only in very high water quality, and 10 being the most tolerant, present in severely polluted and disturbed sites. This metric sums the pollution tolerances for each Family, then computes and reports the average.

% Composition of Selected Major Groups: This metric calculates the percent of the sample in the selected groups of Ephemeroptera, Plecoptera, Trichoptera, Coleoptera, Chironomidae, Oligochaeta, and other, which includes all other Orders not previously mentioned. These percentages can then be compared with other sites.

% Mayfly Composition: This metric is simply the ratio of the number of individuals in the Order Ephemeroptera to the total number of individuals identified. Mayflies are typically intolerant of pollution, and are often the first to disappear with declining water quality. Mayflies are common in high quality streams. The percent abundance can change rapidly to even minor environmental disturbances.

% Caddisfly Composition: This metric is the ratio of the number of individuals in the Order Tricoptera to the total number of individuals identified. Caddisflies are often the predominant invertebrate component in unimpacted streams.

% Contribution of Dominant Taxon: This is the ratio of the number of individuals in the most abundant taxon to the total number of individuals identified. A community dominated by relatively few taxa would indicate environmental stress.

% Isopods, Snails, and Leeches: This metric is the ratio of the sum of the number of individuals in the Order Isopoda, Class Gastropoda and Class Hirundinea, to the total number of individuals observed. These organisms show a high tolerance to pollution. High percentages at a site are good evidence for stream degradation.

% Surface Dependent: This is the ratio of the number of macroinvertebrates which obtain oxygen directly from atmosheric air, usually at the surface, to the total number of individuals observed. High percentages of surface breathers may indicate large diurnal dissolved oxygen shifts, or other oxygen demanding contraints.

Table 5 presents the results and metrics for the Cloquet River based upon all samples, while Table 6 presents the data from *only* the riffle and run samples. Between 24 (RS#2) and 33 (RS#3) different families were identified

in the five sampling stations of the Cloquet River (Table 5). Bivalves were not included in these metrics, but are listed in Appendix 2. The most dominant families observed in all five stations belonged to the Orders Trichoptera and Ephemeroptera (Figure 7, Appendix 2). EPT richness ranged from 11 to 16 (Table 6). Total Family richness values in excess of 12, and EPT values greater than 8 suggest that a site is not, or only slightly impaired (Tables 5 and 6) (River Monitors Manual, 1997). These results suggest that the Cloquet River benthic invertebrate community is not impaired.

Modified family biotic index values (pollution tolerances) calculated ranged from 1.60 to 1.99 (Table 6). Pollution tolerance values used were those assigned to each family by Hilsenhoff (1977, 1982, 1988) for the western Great Lakes region. Interpretations of the biotic index value is provided by Hilsenhoff (1982) in a survey of 53 streams in Wisconsin, and presented in Table 6. The samples collected from the upper Cloquet River suggest the water quality is very good. The biotic index is a very sensitive and effective means to evaluate water quality (Hilsenhoff 1977). This index is described as being quicker, more economical, and more sensitive than physical or chemical procedures, and can detect past perturbations, while physical and chemical procedures can only detect present pollution (Hilsenhoff 1977).

Large numbers of families, in particular those the orders Ephemeroptera and Trichoptera, were observed from samples collected in June and July 2001 from the Cloquet River (Tables 5 and 6). Including the pool transects, 66.7% of all invertebrates sampled were in the orders Ephemeroptera and Trichoptera (Table 5). Combined with biotic index values, the data suggests that the invertebrate community is not, or only slightly impaired, and the water quality is very good.

Percent Composition of Major Groups sampled at riffle sites is presented in Table 6. Minnesota does not have a suitable reference stream available for comparison. Thus, we were not able to calculate community similarity indices, comparing the benthic community of the Cloquet River to a non-impacted reference community. The values are reported here for comparison with future assessments or surveys from other rivers.

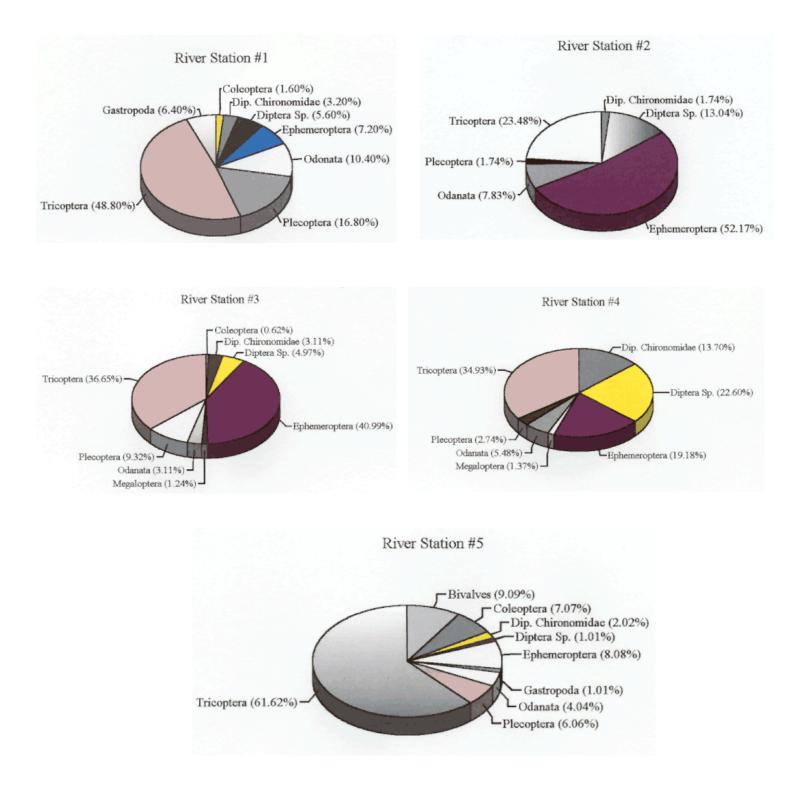
Fish Sampling

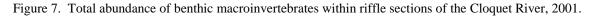
Fish species were inventoried with a variety of methods. The shallow, rocky river prevented use of an electrofishing boat, so backpack electroshocking, trap nets, trotlines, and angling were all used to sample various locations. All fish were sorted to species and counted. Game fish were individually measured (total length, near-est mm). Representative samples of specimens that could not be identified in the field were preserved in 70% isopropanol and returned to the lab for positive identification. Catch-per-unit-effort metrics were calculated to provide a comparison of relative abundance between sites, both between and within species.

A total of 323 fish representing 9 families were captured using the various gear types (Table 7). The greatest diversity was observed in the Cyprinidae and Percidae families with four species each. Three species of Centrarchids were observed, along with two species each of Catostomids and Ictalurids. All other Families were represented by a single species.

Modified Windermere trap nets (Edwards et. al 1998) were also fished at each sampling station. Effort ranged from three net-nights (1 net-night = 1 trap/24 hours) to six net-nights per station. Forty-six fish representing 8

						Total for
Metric	RS1	RS2	RS3	RS4	RS5	Upper Cloquet River
Total # of Taxa	27	24	33	29	29	61
Total # Mayfly Taxa	5	5	7	6	7	12
Total # Caddisfly Taxa	5	4	8	7	6	13
Total # Stonefly Taxa	3	2	3	3	3	6
Percent Mayfly Composition	0.101	0.611	0.299	0.254	0.229	0.318
Percent Caddisfly Composition	0.589	0.166	0.366	0.271	0.386	0.349
Percent Contribution of Dominant Taxon	0.479	0.329	0.169	0.154	0.196	0.206
Percent Isopods, Snails, and Leeches	0.025	0.068	0.035	0.000	0.065	0.038
Percent Surface Dependent	0.000	0.008	0.000	0.000	0.007	0.003


Table 5. Benthic Macroinvertebrate scores for nine metrics for each sampling station, and for the upper section of the Cloquet River, between Indian Lake and Island Lake. Metrics are taken from the Michigan Department of Environmental Quality, Report #51 (1997), which suggests using pool, riffle, and run stations within each sampling site. Data from each transect was combined within each station.


Table 6. Metrics taken from River Monitors Manual (1997) and Hilsenhoff (1982), followed by family richness, EPT richness, pollution tolerance values, and % composition of major groups from benthic macroinvertebrate survey of the Cloquet River, 2001. Metrics summarized data collected from *only* the run and riffle transects of each station, except for the Total Pollution Tolerance indices.

Level of Impairment	Relative Abundance (River Monitors Manual 1997)	Richness
Seriously Impaired	Mayflies (Ephem) and Stoneflies (Plecop) not Present And Sample is Dominated by Worms, Leeches, Midges, Sowbugs, Scuds, Clams, or Snails	Total < 8 EPT < 4
Not or Slightly Impaired	 Sample is Dominated by Mayflies (Ephem), Stoneflies (Plecop) and / or Caddisflies (Trichop) If Caddisflies Dominate, then Mayflies or stoneflies are common <i>If Sample doesn't fall into either category, then classify it as "Moderately Impaired"</i> 	Total > 12 EPT > 8
Biotic Index	Family Biotic Index (Hilsenhoff 1982) Degree of Organic Pollution	Water Quality
0.00 - 1.75 1.76 - 2.25 2.26 - 2.75 2.76 - 3.50 3.51 - 4.25 5.26 - 5.00	No Organic Pollution Possible Slight Organic Pollution Some Organic Pollution Significant Organic Pollution Very Significant Organic Pollution Severe Organic Pollution	Excellent Very Good Good Fair Poor Very Poor

Table 6. Continued.

Cloquet River Index	River Station #1	RS #2	RS #3	RS #4	RS #5
Family Richness	23	23	33	26	29
EPT Richness	13	11	16	12	15
Pollution Tolerances					
Total	1.73	1.63	1.65	1.99	1.83
Riffle / Run Samples	1.71	1.67	1.60	1.99	1.84
% Composition of Major Groups	Riffle Sections Only				
Ephemeroptera	7.20	52.17	40.99	19.18	8.08
Plecoptera	16.80	1.74	9.32	2.74	6.06
Trichoptera	48.80	23.48	36.65	34.93	61.62
Coleoptera	1.60	0.00	0.62	0.00	7.07
Chironomidae	3.20	1.74	3.11	13.70	2.02
Oligochaeta	0.00	0.00	0.00	0.00	0.00
Other	22.40	20.87	9.32	29.45	15.15

Family	Common Name	Scientific Name	Number	Percent
Cyprinidae	Longnose Dace	Rhinichthys cataractae	69	21.36
	Blacknose Dace	Rhinichthys atratulus	1	0.31
	Finescale Dace	Chrosomus neogaeus	1	0.31
	Creek Chub	Semotilus atriculatus	1	0.31
Centrarchidae	Smallmouth Bass	Micropterus dolomieu	33	10.22
	Rock Bass	Ambloplites rupestris	25	7.74
	Bluegill	Lepomis machrochirus	4	1.24
Percidae	Johnny Darter	Etheostoma nigrum	28	8.67
	Logperch	Percina caprodes	17	5.26
	Yellow Perch	Perca flavescens	17	5.26
	Walleye	Stizostedion vitreum	12	3.72
Ictaluridae	Channel Catfish	Ictalurus punctatus	1	0.31
	Tadpole Madtom	Noturus gyrinus	1	0.31
Catostomidae	Shorthead Redhorse	Moxostoma macrolepidotum	10	3.10
	White Sucker	Catostomus commersoni	7	2.17
Esocidae	Northern Pike	Esox lucius	58	17.96
Cottidae	Sculpin	Cottus sp.	8	2.48
Umbridae	Mudminnow	Umbra limi	3	0.93
Gadidae	Burbot	Lota lota	27	8.36
			N = 323	

Table 7. Number and percentage of total catch for fish species collected in the Cloquet River using backpack electrofishing, trotlines, trapnets, minnow traps, seines, and angling, summer 2001.

species were captured in the traps (Table 8). Rockbass (*Ambloplites rupestris*) was the most abundant species (22 individuals), followed by yellow perch (*Perca flavescens*, 11 individuals).

Trotlines baited with chicken liver were used very successfully below Island Lake Reservoir in 1998 to capture channel catfish (*Ictalurus punctatus*). We did not expect to capture many catfish above the reservoir, so we utilized a wider variety of baits in 2001 to try and capture additional species. Hooks were baited with fresh chicken liver, nightcrawlers, or dead minnows. Effort ranged from 60 to 64 hook-nights (1 hook-night = 1 hook/24 hours) per sampling station (Table 8). Shorthead redhorse (*Moxostoma macrolepidotum*) was the most common species captured (9 individuals), followed by northern pike (*Esox lucius*) and smallmouth bass (*Micropterus dolomieu*) with 6 individuals each. Only 1 channel catfish was captured. Many hooks lacked bait after the 24 hour set, but there was no way to tell if the bait had been removed by fish, turtles, crayfish, or current.

Angling was used for the purpose of obtaining data on larger specimens of game fish. Angling was conducted at all five stations previously established for other sampling gears. All angling was done with artificial lures. Angling effort (hours) and catch were recorded (Table 9). Thirty northern pike, 22 smallmouth bass, 11 walleye (*Stizostedion vitreum*), 2 rock bass, and 1 bluegill (*Lepomis macrochirus*) were collected. Total angling effort and catch were tabulated for these sections of the river. Catch per unit effort (# fish/angler hour) was then calculated for northern pike, smallmouth bass, walleye, rockbass and bluegill (Table 9). When possible, scale/spine samples were collected from each fish for aging. The fish were then released after being measured.

Backpack electrofishing was the most productive method of sampling the fish community in terms of species diversity and catch rates (Table 10). Sixteen species representing 9 families were collected. Longnose dace (*Rhinichthys cataractae*) was the most abundant species sampled (66 individuals), collected at all locations but Station 4. Johnny darters (*Etheostoma nigrum*) (28 individuals) and burbot (*Lota lota*) (27 individuals) were also common in electrofishing catches. Number of species per location varied from 2 to 10, although only the riffle was sampled at River Station 5 due to an equipment problem. For stations where all 3 habitat types were sampled, the minimum number of species collected was 5.

Although electrofishing was the best of the methods used in this study, strong current velocities and river depth severely limited effective sampling area. Most pool and run sampling efforts were conducted along the margins of the habitat. Riffles and rapids were shocked in midstream when current velocities and footing allowed. Hassinger (1967) utilized boat mounted boomshocking equipment to sample areas below the Island Lake Dam. Neither Fond du Lac's nor the 1854 Authority's boomshocking boats are small enough to be launched and utilized in the portion of the river where sampling occurred.

Table 8. Trotline and trapnet catches by sampling station, expressed as catch / hook-night (trotline) and catch / net-night (trapnet). One hook-night equals one baited hook set for 24 hours, and one net-night equals one net set for 24 hours.

	Tr	Trotline (Catch / Hook-night)					Trapnet (Catch / Net-night)				
			Station			Station					
Species	1	2	3	4	5	1	2	3	4	5	
Shorthead Redhorse		_		0.10	0.05	0.33	_	_		_	
White Sucker				_		0.33	0.33	0.67	_		
Northern Pike		0.09				—	0.33	0.17			
Smallmouth Bass		_		0.03	0.07	—		_		0.33	
Rock Bass		_				2.00		1.00			
Bluegill		_		0.02		—	0.67	_			
Yellow Perch		_			0.03	0.33	3.33	_			
Walleye		_				_		_		0.33	
Channel Catfish		_		0.02		_	_	_		_	

Table 9. Comparison of angling catch per unit effort (# fish/hour) data for northern pike, smallmouth bass, walleye, rockbass, and bluegill in each station and transect of the Cloquet River, summer 2001.

	Angler Effort			(N) # fish/hou	r	
River Segment	(hours)	N. Pike	S. Bass	Walleye	Rockbass	Bluegill
RS1 Pool						
Riffle						
Run	7.5	(7) 0.9	(1) 1.0			
RS2 Pool	2.0	(3) 1.5				
Riffle	1.0					
Run	1.0	(5) 5.0				
RS3 Pool Riffle	2.8	(3) 1.1	(1) 0.4			
Run	1.8	(3) 1.7		(3) 1.7		
Backwater	2.0	(2) 1.0				
RS4 Pool Riffle Run	1.0		(1) 1.0		(1) 1.0	(1) 1.0
RS5 Pool Riffle Run	6.0 1.7	(7) 1.2	(11) 1.8 (8) 4.7	(8) 1.3	(1) 0.2	

Location Electrofishing On-Time (sec)	RS 1 1133	RS 2 792	RS 3 1050	RS 4 979	RS 5 309
Species Observed					
Longnose Dace	50.8 (N=16)	100.0 (22)	92.6 (27)		11.6 (1)
Blacknose Dace			3.4 (1)		
Finescale Dace				3.7 (1)	
Creek Chub	3.2 (1)				
Smallmouth Bass			3.4 (1)	22.1 (6)	
Bluegill				3.7 (1)	
Johnny Darter	41.3 (13)	13.6 (3)	34.3 (10)		23.3 (2)
Logperch		13.6 (3)	48.0 (14)		
Yellow Perch	3.2 (1)	4.5 (1)	3.4 (1)	3.7 (1)	
Walleye	3.2 (1)				
Tadpole Madtom	3.2 (1)				
White Sucker				18.4 (5)	
Northern Pike	12.7 (4)		3.4 (1)		
Sculpin	3.2 (1)	9.1 (2)	17.1 (5)		
Mudminnow	6.4 (2)	4.5 (1)			
Burbot	34.9 (11)	40.9 (9)	24.0 (7)		

Table 10. Backpack electrofishing catches by sampling location expressed as catch per unit effort in # fish / hour of on-time, and sample size (N). Data from all transects, i.e. pool, riffle and run, were combined for each river sampling station (RS). In RS5, only the riffle transect was sampled due to equipment problems.

Notes on selected species

Northern Pike—Fifty-eight northern pike were captured with various gears (Tables 7 - 10). These fish ranged in size from 3.5 to 28.7 inches (Figure 8). These results are similar to those reported by Hassinger (1967) when he reported northern pike sizes from 3 to 27 inches and the range of 4 to 23 inches observed by the authors in the 1996-1998 study of the lower Cloquet. Northern pike were captured with electrofishing gear at stations 1 and 3 (Table 10). Several small northern pike were also observed while canoeing and wading. Angling efforts captured fish at all stations except station 4 (Table 9). Catch per angler hour was highest at station 2 (2.0 fish/hour). Trotline captures of northern pike were also highest at station 2 (Table 8). Many of the shallow river areas, bays, and side lakes provide suitable spawning habitat for northern pike. Small forage fish appear to be present in sufficient abundance.

Walleye — Eleven walleyes were captured by angling (Tables 7 - 10). These fish ranged in size from 11.3 to 16.7 inches (Figure 9) with most in the 11 to 14 inch range. Hassinger (1967) reported average walleye size to be 12 inches and the authors found most walleye in the 1996-1998 study of the lower Cloquet to fall within the 12 to 14 inch range. Walleyes were only captured at stations 1, 3, and 5, with the most angling success coming at stations 3 and 5 (Table 9). Most walleyes were captured in pools immediately below rapids. Age classes identified for walleye ranged from age 3 to 7 years (Figure 10). Walleyes are a popular gamefish in Island Lake Reservoir, where a strong naturally reproducing population is present. Some suitable spawning habitat exists in the river above the reservoir, however, no young walleye were captured. This likely is an artifact of sampling difficulties, timing, or unsuitable sampling sites for young-of-the-year walleye. Many of the rapids are likely impassable to walleyes during the spawning run and probably limit spawning movements and activity.

Smallmouth Bass—A total of 33 smallmouth bass were captured using all gear types (Tables 7 - 10). These fish ranged in size from 3.2 to 14.2 inches (Figure 11). Specimens aged ranged from 2 to 6 years (Figure 12), although the 3.2 inch fish was a young of the year, and probable age-1 were also observed. Smallmouth were captured with electrofishing gear only at stations 3 and 4 (Table 10). However, smallmouth bass were captured at all locations but station 2 with angling gear (Table 9). Angler CPUE was highest at station 5 and in general smallmouth bass were more abundant as we approached Island Lake Reservoir.

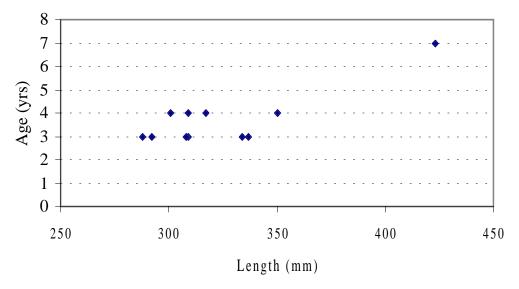


Figure 10. Length at age observed for walleye, Stizostedion vitreum, in the Cloquet River, August 2001.

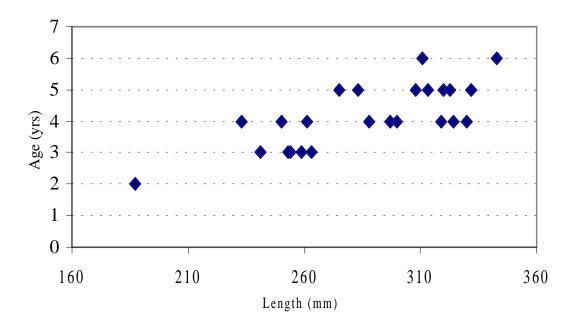
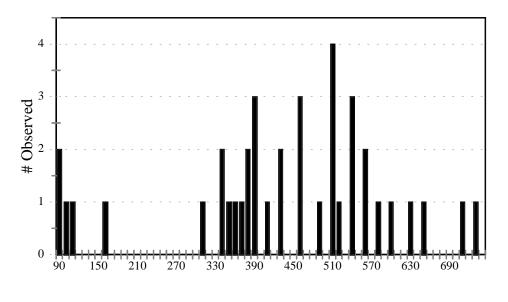
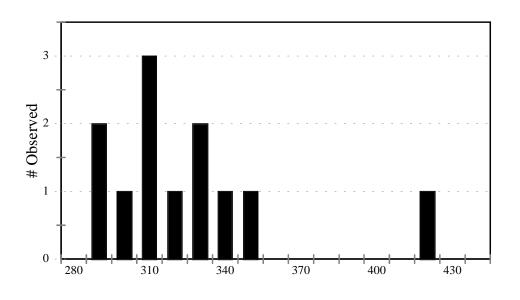




Figure 12. Length at age observed for smallmouth bass, *Micropterus dolomieu*, in the Cloquet River, August 2001.

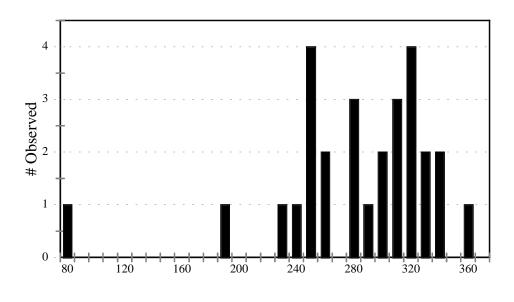

Length (mm)

Figure 8. Length frequency distribution of northern pike, *Esox lucius*, observed in the Cloquet River, summer 2002.

Length (mm)

Figure 9. Length frequency distribution of walleye, *Stizostedion vitreum*, observed in the Cloquet River, summer 2002.

Length (mm)

Figure 11. Length frequency distribution of smallmouth bass, *Micropterus dolomieu*, observed in the Cloquet River, summer 2002.

Index of Biotic Integrity (IBI)

The fish survey protocol is based largely on Karr's Index of Biotic Integrity (IBI) (Karr 1981, Karr et al. 1986, Miller et al. 1988), which uses the structure of the fish assemblage to evaluate water quality, and was designed to evaluate the quality of small Midwestern warmwater streams. We used the Wisconsin IBI for the Cloquet River fish community (Lyons 1992). The IBI compares the values of various metrics with values expected in similar streams of high environmental quality (Lyons 1992). Observed values that are close to those expected suggest that the environmental quality is high. A complete description of the Wisconsin IBI can be found in Lyons (1992).

For the Cloquet River, the following metrics were used, with substitutions made as per those suggested by Lyons (1992):

Total number of native species: Total number of species collected, minus hybrids and exotics.

Number of darter species: Darters are benthic species, and tend to be intolerant of many types of degradation. In the Lake Superior Basin, sculpins and madtoms are also included in this metric.

Number of sucker species: Total number observed.

Number of sunfish species: Total number observed (family Centrarchidae), including rock bass and crappie, but excluding hybrids and smallmouth and largemouth bass. In the Lake Superior Basin, yellow perch are included in this metric, since they occupy an ecological niche similar to the sunfishes'. Most are moderately tolerant of environmental degradation.

Number of intolerant species: Total number of species observed that are intolerant to environmental degradation, including poor water quality, siltation, increased turbidity, and reduced habitat heterogeneity. Lyons (1992) classified fishes for the Lake Superior Basin that fit this category, and included, for this survey, rock bass, smallmouth bass, and slimy sculpin.

Percent that are tolerant species: The number of individuals classified as tolerant species (Lyons 1992), expressed as a percentage of the total number of fish captured, including central mudminnow, blacknose dace, creek chub, and white sucker.

Percent that are omnivores: The number of individuals classified as omnivorous (Lyons 1992), expressed as a percentage of the total number of fish captured. Omnivores can utilize a variety of food resources, and are generally more insensitive to changes in the food base of a stream due to environmental degradation.

Percent that are insectivores: The number of individuals classified as insectivorous (Lyons 1992), expressed as a percentage of the total number of fish captured. Creek chub and blacknose dace are not considered in this metric (Lyons 1992). Examples include central mudminnow, finescale dace, longnose dace, shorthead redhorse, tadpole madtom, bluegill, johnny darter, yellow perch, logperch, and slimy sculpin.

Percent that are top carnivores: The number of individuals classified as top carnivores (Lyons 1992), expressed as a percentage of the total number of fish captured. Those included in this metric were northern pike, channel cat-fish, burbot, rock bass, smallmouth bass, and walleye.

Percent that are simple lithophilous spawners: The number of individuals classified as simple lithophilous spawners (Lyons 1992), expressed as a percentage of the total number of fish captured. These species lay their eggs on clean gravel or cobble, and do not build nests nor provide any parental care. Those included in this metric were blacknose dace, longnose dace, white sucker, shorthead redhorse, burbot, logperch, and walleye.

Scores were calculated for each of the ten metrics, and scoring criteria used for sites in the Lake Superior Basin with stream widths greater than 12.2 m (Lyons 1992). Scores are presented in Table 11, with an overall IBI score of 85. A score between 100 - 65 indicates excellent biotic integrity. This suggests that the fish community consists of a balanced trophic structure, and is comparable to the best situations with little human - induced disturbance (Lyons 1992). The score of 85 is comparable to the score of 82 computed for the stretch of the Cloquet River downstream from Island Lake to the St. Louis River (Borkholder et al. 1999).

Lyons (1992) cautions against using the IBI on streams that are too deep or wide to be effectively sampled by wading, or when multiple gear types are used to sample the fish communities. There were sections that were too deep to be sampled effectively with backpack electrofishing gear, and thus multiple gear types were used in this study. Therefore, the Wisconsin IBI may not be the most appropriate model to use. Given these limitations, even if the actual IBI score may be suspect, an IBI value of 85 is sufficient to at least suggest that the Cloquet River fish community is balanced and does not suffer from any serious effects due to environmental degradation.

Table 11.. Observed values and IBI scores for ten metrics describing the fish community of the Cloquet River. Metrics used are taken from Lyons (1992) for sites within the Lake Superior Basin with mean stream widths greater than 12.2 meters.

Metric	Observed Value	IBI Score
# Native Species	19	10
# Darter Species ¹	4	10
# Sucker Species	2	5
# Sunfish Species ²	3	10
# Intolerant Species	3	10
% Tolerant Species	3.72%	10
% Omnivore Species	2.17%	10
% Insectivorous Species	49.23%	5
% Top Carnivores	48.30%	10
% Lithophilous Species	22.91%	5
	IBI SCORE	85

¹For sites within the Lake Superior basin, the Darters metric includes all darters plus any sculpin and madtom species (Lyons 1992).

²For sites within the Lake Superior basin, the Sunfish metric includes all sunfish plus yellow perch (Lyons 1992).

ACKNOWLEDGEMENTS

This project was a collaborative effort involving many different people and organizations, all of which contributed greatly to its success. Assistance with field assessments, surveys, data collections, and lab work was received and appreciated from the following individuals: Darren Vogt and Sonny Myers, 1854 Authority; Sean Thompson and Gary Martineau, Fond du Lac Resource Management. Assistance with keying out the invertebrates was received from Nancy Costa and Tom Howes, Fond du Lac Environmental Department, and from Dan Breneman, Natural Resources Research Institute, Duluth. Assistance with surveying and identifying the aquatic macrophytes and shoreline plants was provided by Rick Gitar, Fond du Lac Environmental Department. We gratefully acknowledge the cooperation received from Mark Furo, Dale Seafolk, and John Stark, who allowed us access to the river by way of their properties.

LITERATURE CITED

Barbour, M.T., J. Gerritsen, B.D. Snyder, and J.B. Stribling. 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, Second Edition. EPA 841-B-99-002. U.S. Environmental Protection Agency; Office of Water; Washington, D.C.

- Benke, A.C., T.C. Van Arsdall, Jr., and D.M. Gillespie. 1984. Invertebrate productivity in a subtropical blackwater river: The importance of habitat and life history. *Ecological Monographs* 54(1):25 - 63.
- Borkholder, B.D., A.J. Edwards, and D.J. Vogt. 1999. Biological, Physical, and Chemical Characteristics of the Cloquet River from the Island Lake Dam to the St. Louis River, 1996 - 1998. Fond du Lac Reservation Resource Management Technical Report, No. 26. Cloquet, MN.
- Edwards, A.J., G.D. Czypinski, and J.H. Selgeby. 1998. A collapsible trap for capturing ruffe. *North American Journal of Fisheries Management* 18:465-469.
- Gernes, M.C., and J.C. Helgen. 1999. Indexes of biotic integrity (IBI) for wetlands: vegetation and invertebrate IBI's. MN Pollution Control Agency, Final Report CD995525-01, St. Paul, MN.
- Hassinger, R. 1967. The Cloquet River: Its ecology and recreation. MN Dept. of Conservation, Special Publication No. 41, March 1967.
- Hilsenhoff, W.L. 1977. Use of Arthropods to evaluate water quality of streams. Technical Bulletin No. 100, Wisconsin Department of Natural Resources, Madison, WI.
- Hilsenhoff, W.L. 1982. Using a biotic index to evaluate water quality in streams. Technical Bulletin No. 132. Department of Natural Resources, Madison, WI.
- Hilsenhoff, W.L. 1987. An improved biotic index of organic stream pollution. *Great Lakes Entomology* 20:31 39.
- Hilsenhoff, W. L. 1988. Rapid field assessment of organic pollution with a family level biotic index. *Journal of the North American Benthological Society* 7(1):65 68.
- Hove, M.C. 1997. Bioassessment of Sandy River Watershed. Final report to the MN DNR, Conservation Partners Grant Program, St. Paul, MN. 175 pp.
- Karr, J.R. 1981. Assessment of biotic integrity using fish communities. Fisheries 6:21-27.
- Karr, J.R. 1991. Biological integrity: A long-neglected aspect of water resource management. *Ecological Applications* 1:66-84.
- Karr, J.R., K.D. Fausch, P.L. Angermeier, P.R. Yant, and I.J. Schlosser. 1986. *Assessing biological integrity in running waters: A method and its rationale*. Special publication 5. Illinois Natural History Survey.
- Lyons, J. 1992. Using the index of biotic integrity (IBI) to measure environmental quality in warmwater streams of Wisconsin. U.S. Dept of Agriculture, Forest Service. Technical Report NC-149.
- Michigan Department of Environmental Quality. 1997. Qualitative biological and habitat survey protocols for wadable streams and rivers. Great Lakes and Environmental Assessment Section, Procedure #51.
- Miller, D.L., and 13 additional co-authors. 1988. Regional applications of an index of biotic integrity for use in water resource management. Fisheries 5:12-20.
- Minnesota Department of Natural Resources. 1978. A management plan for the Cloquet River. Preliminary Draft October 1978.

- Moyle, J.B. and W. Kenyon. 1947. A biological survey and fishery management plan for the streams of the St. Louis River Basin. Minnesota Conservation Department, Fisheries Research Investigational Report 69.
- Plafkin, J.L., M.T. Barbour, K.D. Porter, S.K. Gross, and R.M. Hughes. 1989. Rapid bioassessment protocols for use in streams and rivers: Benthic invertebrates and fish. United State Environmental Protection Agency publication EPA/440/4-89/001. Washington, D.C.
- Rai, U.N., S. Sinha, R.D. Tripathi, and P. Chandra. 1995. Wastewater treatability potential of some aquatic macrophytes: Removal of heavy metals. *Ecological Engineering* 5:5-12.
- Reddy, K.R., E.M. D'Angelo, and T.A. DeBusk. 1989. Oxygen transport through aquatic macrophytes: The role in wastewater treatment. *Journal of Environmental Quality* 19:261-267.
- Sternberg, R.B. 1978. Minnesota stream survey manual. Minnesota Department of Natural Resources, Special Publication No. 120. April 1978.
- Voss, E. 1996. Michigan Flora, Part III: Dicots (Pyrolaceae Compositae). Cranbrook Institute of Science. Bloomfield, MI. 622 pp.
- Waldrop, D.H., and R.P. Brooks. 1998. The occurrence and impact of sedimentation in central Pennsylvania wetlands. *Environmental Monitoring and Assessment* 51:119-130.
- Zayed, A., S. Gowthaman, and N. Terry. 1998. Phytoaccumulation of trace elements by wetland plants. I. Duckweed. *Journal of Environmental Quality* 27:715-721.

			RS1			RS2				RS3	
Scientific Name	Common Name	Pool	Riffle	Run	Pool	Riffle	Run	Pool	Riffle	Run	Backwate
					_						
Alge Spp.			Х	Х		Х	X	X	Х	Х	X
Alysma Spp.			Х	Х				Х	Х	Х	
Acer saccharinu L.	Silver maple	Х		Х							
Agrostis stoloniferL.	Redtop										
Alisma trivialePursh.	Northern water-plantain	Х		Х							
Amelanchier bartramia (Tausch) Roemer	Mountain serviceberry			Х							
Callitriche palustriL.	Spiny water-starwort									Х	
Carex Spp.								Х	Х	Х	Х
Carex intumescer Rudge	Shining bur sedge						Х				
Carex rostratJ. Stokes	Beaked sedge		Х							Х	
Carex strict:Lam.	Common tussock sedge								Х		
Ceratophyllum demersiL.1	Common coontail		Х			Х					X
Eleocharis palustr L.	Creeping spike-rush										
Elodea Spp.	1 3 1										
Elodea canadens Michx.	Water weed	Х					Х				Х
Elymus virginicu L.	Virginia wildrye								Х		
Eupatorium Spp.	, .						Х				
Equisetum Spp.											
Equisetum arvensL.	Field horsetail		Х						Х		Х
Equisetum pratensEhrh.	Meadow horsetail		~					Х	~		~
Eupatorium maculati L.	Spotted joe-pye weed					Х					
Galium Spp.	opolica joe pye weed				Х	~					
Glyceria striat (Lam.) A. Hitchc.	Fowl-mannagrass		Х		^	Х			Х	Х	Х
Juncus Spp.	on boulder		~		_	x			X	~	^
Juncus effusu:L.	Soft rush				-	~	х		~		
Lichen Spp.	Contrash				-	Х		-			
Lycopus american.Muhl.	American water-horehound				_	X					
Mimulus ringenL.	Allegheny monkey-flower				-	~				Х	
Nuphar microphyl (Pers.) Fern.	Yellow water-lily									^	Х
Onoclea sensibil L.	Sensitive fern			Х			x				^
Poaceae Spp.	Grass			^	-						
Potamogeton Spp.	Broadleaf Pondweed			Х	Х						
	Narrow Leaf Pondweed		Х	x	x		х	Х			Х
Potamogeton Spp. Potamogeton natalL.			^	^	^		· ·	x			x
	Floating pondweed				_				Х		X
Potamogeton robbin:Oakes	Fern pondweed	V			-			-	Å		X
Potamogeton spirill Tuckerman	Northern snailseed pondwe Bramle	Х	N/								
Rybus Spp.			Х								N/
Sagittaria gramineMichx.	Grass-leaved arrowhead		N/	v	v		N/	×	×	v	X
Sagittaria latifoli Willd.	Common arrowhead	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Salix sp.	A species of willow				_	X		_			
Scirpus cyperinu(L.) Kunth.	Woolgrass										X
Sium suaveWalter	Water parsnip						Х		Х		Х
Sparganium Spp.			Х						Х		- N
Sparganium americantNutt.	American bur-reed										X
Sparganium chlorocarpiRydb.	Dwarf bur-reed				_		Х				Х
Sparganium spp.		Х			_						
Sphagnunsp.	Sphagnum moss species				_			_			
Spirea alb DuRoi	Meadowsweet							Х			Х
Stellaria longifoli Muhl.	Long-leaved stitchwort							Х			
Utricularia intermedHayne	Northern bladderwort						Х				
Vallisneria Spp.			Х	Х							
Vallisneria americaıL.	Water celery	Х				Х	Х	Х	Х	Х	Х
Viburnum opulı L.	High-bush cranberry										
Zizania palustris	Wild Rice										

Table 3. Aquatic macrophytes identified within the stream channel on the Cloquet River, August 2001.

Table 3. Continued.

Scientific Name	Common Name	Pool	RS4 Riffle	Run	Pool	RS5 Riffle	Run
			Х	Х	Х	Х	Х
Alge Spp. Alysma Spp.		Х	~	^	^	X	X
	Cilura marka	X	V			~	
Acer saccharinum L.	Silver maple		Х				
Agrostis stolonifera L.	Redtop						
Alisma triviale Pursh.	Northern water-plantain				Х		
Amelanchier bartramiana (Tausch) Roemer	Mountain serviceberry						
Callitriche palustris L.	Spiny water-starwort						Х
Carex Spp.							
Carex intumescens Rudge	Shining bur sedge						
Carex rostrata J. Stokes	Beaked sedge						
Carex stricta Lam.	Common tussock sedge						
Ceratophyllum demersum L.	Common coontail	Х					
Eleocharis palustris L.	Creeping spike-rush					Х	
Elodea Spp.				Х			
Elodea canadensis Michx.	Water weed						
Elymus virginicus L.	Virginia wildrye						
Eupatorium Spp.	virginia viraryo						
Equisetum Spp.		Х	Х	Х	_	Х	
Equisetum arvense L.	Field horsetail	~	~	~		^	
	Meadow horsetail						
Equisetum pratense Ehrh.							V
Eupatorium maculatum L.	Spotted joe-pye weed						Х
Galium Spp.					N/	N/	
Glyceria striata (Lam.) A. Hitchc.	Fowl-mannagrass	Х			Х	Х	
Juncus Spp.	on boulder		Х	Х			
Juncus effusus L.	Soft rush				Х		
Lichen Spp.							
Lycopus americanus Muhl.	American water-horehound					Х	Х
Mimulus ringens L.	Allegheny monkey-flower						
Nuphar microphylla (Pers.) Fern.	Yellow water-lily					Х	Х
Onoclea sensibilis L.	Sensitive fern						
Poaceae Spp.	Grass		Х				Х
Potamogeton Spp.	Broadleaf Pondweed	Х	X	Х			
Potamogeton Spp.	Narrow Leaf Pondweed	X			Х	Х	
Potamogeton natans L.	Floating pondweed	~			~	~	
Potamogeton robbinsii Oakes	Fern pondweed				Х	Х	
Potamogeton spirillus Tuckerman	Northern snailseed pondweed				^	^	
Rybus Spp.	Bramle						
Sagittaria graminea Michx.	Grass-leaved arrowhead					× 1	
Sagittaria latifolia Willd.	Common arrowhead	Х		Х	Х	Х	Х
Salix sp.	A species of willow						
Scirpus cyperinus (L.) Kunth.	Woolgrass						
Sium suave Walter	Water parsnip	Х	Х			Х	
Sparganium Spp.				Х		Х	Х
Sparganium americanum Nutt.	American bur-reed						
Sparganium chlorocarpum Rydb.	Dwarf bur-reed						
Sparganium spp.							
Sphagnum sp.	Sphagnum moss species	Х					
Spirea alba DuRoi	Meadowsweet						
Stellaria longifolia Muhl.	Long-leaved stitchwort						
Utricularia intermedia Hayne	Northern bladderwort			X			
Utricularia intermedia Havne Vallisneria Spp.				X	Х		
		V	V	^	^	X	
Vallisneria americana L.	Water celery	Х	Х			Х	
Viburnum opulus L. Zizania palustris	High-bush cranberry						
	Wild Rice	Х		Х			

Table 4.	Aquatic n	nacrophytes	identified alon	g the shoreline o	of the Cloa	uet River, August 2001.

			RS1			RS2				RS3	
Scientific Name	Common Name	Pool	Riffle	Run	Pool	Riffle	Run	Pool	Riffle	Run	Backwate
Acer Spp.			Х		х						
Acer saccharinum L.	Silver maple	Х	X		~	Х	х	Х	х	х	
Agrostis stolonifera L.	Redtop		~		1	~ ~	· · · ·	x	X X	X	
Alopecurus Spp.	Fox Tail spp.				Х			~	~	~	
Alisma triviale Pursh.	Northern water-plantain				~						-
Alnus incana (L.) Moench.	Speckled alder/tag alder			Х	Х	Х	Х	Х	Х	Х	
Amelanchier bartramiana (Tausch) Roemer	Mountain serviceberry			^	~	~	^	~	Ŷ	~	
Aster Spp.	Would all serviceberry							X	X X	Х	+
Aster borealis Prov.	Northern bog aster	Х			-			^	^	^	
	Noninem bog aster	^									-
Bidens Spp.		X			-		V				
Bidens cernua L.	Nodding beggar-ticks	X		+ +			X				-
Brassica sp.	Mustard species	_ X			-			- ×		V	1
Carex Spp.								Х	Х	Х	
Carex psuedocyperus L.	False bristly sedge					Х	X	Х		Х	Х
Carex rostrata J. Stokes	Beaked sedge	Х				Х		_			
Carex stipata Muhl.	Common fox sedge					Х					X
Carex stricta Lam.	Common tussock sedge										
Ceratophyllum demersum L.	Common coontail	Х			X						
Chelone glabra L.	White turtlehead	x						Х			
Cicuta maculata L.	Common water-hemlock							^			1
Convolvulus Spp.	COMMUN WALEF-HEIMUCK				Х						-
Convolvulus Spp. Convolvulus arvensis L.	Field bindweed	v		1	^			-		-	-
		X	V	V	-	V			V		
Cornus stolonifera L.	Red-osier dogwood	X	Х	Х	-	Х			Х		+
Chelone glabra L.	White turtlehead	_					X	_			
Eleocharis palustris L.	Creeping spike-rush		Х	Х				_			
Equisetum pratense Ehrh.	Meadow horsetail				X	Х					
Equisetum sylvaticum L.	Woodland horsetail		X X								
Erigeron Spp.	Daisy Fleabane		Х	Х			X				
Eupatorium maculatum L.	Spotted joe-pye weed		Х	X	X	Х	X	X	Х	Х	-
Fraxinus pennsvlvanica Marshall	Green ash	Х	X	X		X		,,,	X	X	
Galium Spp.	Gleenasii				_			_	X		
Galium Spp. Galium asprellum Michx.	Dough hedetrous	V		+ +				Х	^		-
	Rough bedstraw	X	N					^			
Galium trifidum L.	Northern three-lobed bedstraw	X	Х								-
Geum macrophyllum Willd.	Large-leaf avens	Х									-
Glvceria striata (Lam.) A. Hitchc.	Fowl-mannagrass	Х	Х	Х	Х	Х	Х	Х	Х		
Hippuris vulgaris L.	Mare's-tail	_									-
Iris versicolor L.	Northern blue flag							X	Х	Х	
Juncus effusus L.	Soft rush										
Juncus tenuis Willd.	Path rush				X						
Leersia oryzoides (L.) Swartz	Rice cut-grass	Х									
Lobelia siphilitica L.	Great blue lobelia	X									
Lycopus americanus Muhl.	American water-horehound	X	Х	Y	Х	Х	Х	Х	Х	Х	-
Lysimachia ciliata L.	Fringed loosestrife	~	~	X X	~	~	~	~	~	~	
Mimulus ringens L.	Allegheny monkey-flower	Х		^	-		Х				
Onoclea sensibilis L.	Sensitive fern	x x	х		X	х	Ŷ	X	x	х	
		X	X	_	X	X	X	X	X	X	
Osmunda regalis L.	Royal fern										+
Oxalis acetosella L.	Northern wood sorrel	X		L	-			-		-	+
Phalaris arundinacea L.	Reed canary-grass	4	Х	X		Х	X	Х			+
Picea mariana (Miller) BSP	Black spruce			Х						_	1
Pinus strobus L.	White pine						X				
Plantago major L.	Common plantain	X									
Poaceae Spp.	Grasses	x		1							
Populus balsamifera L.	Balsam poplar			Х	1			Х			
Populus baisanniera L. Potamogeton Spp.	Broadleaf Pondweed			x	-			^			†
				x	-			-		-	-
Potamogeton natans L.	Floating pondweed	V		Ā	-		_	-		-	
Rorippa palustris (L.) Besser	Common yellow-cress	X			-						
Rosa Spp.				Х							-
Rubus Spp.	Bramle					Х					-
Sagittaria SPP.											
Salix exiqua Nutt.	Sandbar willow			Х							
Salix sp.	A species of willow			Х						Х	
Scirpus Spp.	Green Bullrush				Х					Х	
Scirpus atrovirens Willd.	Black bulrush	Х	Х	Х		Х	Х		Х	~	Х
Scirpus auoviens vviid. Scirpus cyperinus (L.) Kunth.	Woolgrass		x	Â	-	x	^		~		
Scirpus cyperinus (L.) Kunin. Scutellaria galericulata L.	Marsh/hooded skullcap	+	^	^		^		X			+
				-	-	~		^		-	
Scutellaria laterifolia L.	Blue skullcap				-	Х					+
Sitaria Spp.				+							+
Sium suave Walter	Water parsnip					Х		Х		Х	
Calidada disantaa Aitan	Smooth goldenrod	X									-
Solidago gigantea Aiton. Solidago sp.	Goldenrod species										

Table 4. Continued.

Scientific Name	Common Name	Pool	RS4 Riffle	Run	Pool	RS5 Riffle	Rur
Acer Spp.							
Acer saccharinum L.	Silver maple	Х		Х	Х	Х	Х
Agrostis stolonifera L.	Redtop				X		
Alopecurus Spp.	Fox Tail spp.						
Alisma triviale Pursh.	Northern water-plantain						X
Alnus incana (L.) Moench.	Speckled alder/tag alder	X	Х	X	X	Х	X
Amelanchier bartramiana (Tausch) Roemer	Mountain serviceberry			X	X	X	V
Aster Spp.	Northous box onton			Х	X	Х	Х
Aster borealis Prov. Bidana San	Northern bog aster				-	Х	-
Bidens Spp. Bidens cernua L.	Nodding beggar-ticks				-		
Brassica sp.	Mustard species						
Carex Spp.	Musialu species	Х					
Carex psuedocyperus L.	False bristly sedge	x	Х	Х	Х	Х	Х
Carex rostrata J. Stokes	Beaked sedge	X			X	X	X
Carex stipata Muhl.	Common fox sedge	~~~~					
Carex stricta Lam.	Common tussock sedge	Х					
Ceratophyllum demersum L.	Common coontail						
Chelone glabra L.	White turtlehead						
Cicuta maculata L.	Common water-hemlock				Х		Х
Convolvulus Spp.							
Convolvulus arvensis L.	Field bindweed						
Cornus stolonifera L.	Red-osier dogwood	Х			Х	Х	X
Chelone glabra L.	White turtlehead						
Eleocharis palustris L.	Creeping spike-rush						
Equisetum pratense Ehrh.	Meadow horsetail						
Equisetum sylvaticum L.	Woodland horsetail						
Erigeron Spp.	Daisy Fleabane	X			X		-
Eupatorium maculatum L.	Spotted joe-pye weed	X	• •		X		
Fraxinus pennsylvanica Marshall	Green ash	Х	Х	Х	Х	Х	X
Galium Spp.	De al la late						
Galium asprellum_Michx.	Rough bedstraw				-		
Galium trifidum L.	Northern three-lobed bedstraw						
Geum macrophyllum Willd.	Large-leaf avens			v			v
<u>Glyceria striata (Lam.) A. Hitchc.</u> Hippuris vulgaris L.	Fowl-mannagrass Mare's-tail			Х			Х
ris versicolor L.	Northern blue flag	Х					
Juncus effusus L.	Soft rush	Â					
Juncus tenuis Willd.	Path rush	~					
Leersia oryzoides (L.) Swartz	Rice cut-grass						
Lobelia siphilitica L.	Great blue lobelia						
Lycopus americanus Muhl.	American water-horehound				Х	Х	
Lysimachia ciliata L.	Fringed loosestrife			Х	~	X	
Mimulus ringens L.	Allegheny monkey-flower				Х	X	X
Onoclea sensibilis L.	Sensitive fern	X	Х	Х	X		X
Osmunda regalis L.	Royal fern				X	Х	
Oxalis acetosella L.	Northern wood sorrel						
Phalaris arundinacea L.	Reed canary-grass	Х			Х	Х	X
Picea mariana (Miller) BSP	Black spruce						
Pinus strobus L.	White pine						
Plantago major L.	Common plantain					Х	
Poaceae Spp.	Grasses						
Populus balsamifera L.	Balsam poplar						
Potamogeton Spp.	Broadleaf Pondweed						
Potamogeton natans L.	Floating pondweed						
Rorippa palustris (L.) Besser	Common yellow-cress						
Rosa Spp.					_		
Rubus Spp.	Bramle				_		
Sagittaria SPP.					_	Х	
Salix exigua Nutt.	Sandbar willow						
Salix sp.	A species of willow				_		
Scirpus Spp.	Green Bullrush	X			_		
Scirpus atrovirens Willd.	Black bulrush			Х			
Scirpus cyperinus (L.) Kunth.	Woolgrass	Х	Х		X		Х
Scutellaria galericulata L.	Marsh/hooded skullcap						
Scutellaria laterifolia L.	Blue skullcap	Х					X
Sitaria Spp.					_	Х	X
Sium suave Walter	Water parsnip	X			X	X	X
Solidago gigantea Aiton.	Smooth goldenrod				Х	Х	Х
Solidago sp.	Goldenrod species	Х					
Sonchus sp.	A species of sow thistle						
Sparganium americanum Nutt.	American bur-reed					Х	

Appendix 1. List of all	physical features documented alon	g the Cloquet River, and incorr	porated into the 1854 Authority's GIS database.

Site	River Mile	Location	Description	Latitude	Longitude	Max Depth	Channel Width (yrds)	River Temp	Trib Temp	Quad
L20	37.66	L37.660	inactive beaver lodge	470136.229	920434.028	7	52	75		Thompson
T38	37.71	T37.710	concrete unnamed dam	470133.745	920431.615	4	48	75	76	Thompson
134	37.86	137.860	with snowmobile bridge	470131.000	920420.456	1	77	75		Thompson
L19	37.98	L37.980	active beaver lodge	470132.334	920411.440	8	37	75		Thompson
NS3	38.08	NS38.080	nesting box	470131.147	920404.868	6	51	75		Thompson
T37	38.15	T38.150	intermittent tributary	470133.910	920400.553	2	67	75		Thompson
132	38.23	138.230	cluster of three islands	470137.841	920400.222	3	82	75		Thompson
L18	38.33	L38.330	active beaver lodge	470142.839	920357.186	8	54	75		Thompson
131	38.74	138.740	cluster of three islands	470150.992	920329.351	3	36	75		Thompson
130	38.94	138.940	cluster of three islands	470153.114	920314.962	2	53	75		Thompson
129	39.12	139.120		470159.412	920304.801	3	69	75		Thompson
L17	39.31	L39.310	active beaver lodge	470207.689	920303.508	4	56	75		Thompson
L15	39.63	L39.630	active beaver lodges on both sides of river	470220.791	920316.822	3	95	74		Thompson
T36	39.65	T39.650	trib little flow	470221.527	920316.302	3	95	74	71	Thompson
128	40.09	140.090	with activer beaver dam across stream	470216.148	920244.555	3	37	75		Thompson
L14	40.15	L40.150	inactive beaver lodge	470215.467	920240.345	5	32	75		Thompson
127	40.23	140.230		470216.126	920234.971	2	73	75		Thompson
S1	40.42	S40.420	natural spring, 43 degrees	470221.500	920222.400	2	62	74		Thompson
125	40.47	140.470	two islands	470220.716	920217.814	2	60	74		Thompson
124	40.66	140.660	cluster of small islands	470219.809	920204.277	2	52	74		Thompson
T35	41.19	T41.190	trib low flow with beaver dam up from mouth	470222.400	920137.500	2	90	72	75	Thompson
L12	41.35	L41.350	active beaver lodge	470230.596	920142.244	4	56	73		Thompson
L11	41.71	L41.710	inactive beaver lodge	470248.512	920134.193	8	86	72		Thompson
L10	41.89	L41.890	beaver food stash	470257.191	920132.770	2	55	72		Thompson
L9	41.95	L41.950	beaver food stash, 10' X 4'	470258.699	920135.904	2	68	72		Thompson
123	41.99	141.990		470300.750	920136.401	3	81	72		Thompson
L8	42.03	L42.03	inactive beaver lodge	470302.314	920135.867	7	56	72		Thompson
122	42.03	142.030	with inactive beaver lodge	470302.314	920135.867	7	56	72		Thompson
121	42.21	142.210	large island	470311.236	920132.192	9	80	72		Thompson
NS2	42.25	NS42.250	nesting box	470313.154	920130.139	9	80	72		Thompson
120	42.38	142.380	with nesting box on east side	470317.775	920137.578	6	111	72		Thompson
119	42.41	142.410	10 square yards	470319.555	920138.214	3	119	72		Thompson
T34	42.42	T42.420	sparse rice at mouth, with an inactive dam followed by an active dam	470320.019	920135.446	3	119	72	68	Thompson
118	42.49	142.490	30 yards X 5 yards	470323.832	920138.887	4	87	73		Thompson
L32	42.90	L42.900	inactive beaver lodge	470342.716	920133.913	4	77	74		Thompson
L31	43.36	L43.360	active beaver lodge	470356.274	920126.458	5	59	76		Thompson
E26	43.76	E43.760	51yards, 45 degree angle	470414.011	920144.266	11	56	75		Thompson
T57	43.79	T43.790	small trib, some flow	470413.511	920147.211	9	42	75	82	Thompson
L30	43.93	L43.930	inactive beaver lodge	470407.970	920152.303	5	40	75		Thompson
T56	43.96	T43.960	intermittent drainage with old dam	470408.169	920153.955	6	42	75	80	Thompson
T55	44.05	T44.050	trib no flow	470410.828	920158.776	2	55	74	76	Thompson
139	44.24	144.240		470419.812	920203.298	12	86	75		Thompson
138	44.27	144.270		470421.137	920205.346	12	86	75		Thompson
T54	45.03	T45.030	trib slow flow		920213.976	6	57	73	82	Thompson
T53	45.16	T45.160	intermittent wetland drainage	_	920207.630	6	45	74	78	Thompson
L28	45.40	L45.400	active on I37		920207.535	4	32	72		Thompson
137	45.40	145.400	large island		920207.555	4	32	72		Thompson
T52	45.52	T45.52	intermittent, trickle		920206.486	2	62	71	72	Thompson
L27	45.72	L45.720	active beaver lodge		920156.495	4	50	71		Thompson

T51	45.72	T45.720	trib with beaver dam (2-3' head)	470526.463	920158.588	6	50	71	67	Thompson
L26	45.82	L45.82	active beaver lodg	470530.522		6	36	74		Thompson
T50	45.82	T45.820	across from L26	470530.314		6	36	74	76	Thompson
T49	45.92	T45.920	dammed up trib/bay from Thompson Lake	470535.383		4	47	71	63	Thompson
L25	45.99	L45.990	2 beaver lodges, 1 active	470534.140		6	32	71		Thompson
L24	46.28	L46.280	inactive beaver lodge	470534.586		2	31	71		Thompson
T48	46.28	T46.280	small trib, little flow	470535.344		2	34	71	67	Thompson
T47	46.37	T46.370	drains small pond with beaver dam	470536.516		7	30	71	67	Thompson
T46	46.39	T46.390	drains same pond as T47 with beaver dam	470537.161		8	29	71	72	Thompson
L23	46.43	L46.430	active beaver lodge	470538.888		5	29	71		Thompson
T45	46.59	T46.590	wetland drainage	470540.247		5	31	70	72	Thompson
T44	46.72	T46.720	Little Cloquet River with rice at mouth	470546.368		7	38	70	71	Thompson
L22	46.72	L46.720	inactive beaver lodge	470546.220		3	24	70		Thompson
T43	47.07	T47.070	intermittent, no flow	470549.100		4	26	70		Thompson
T42	47.25	T47.250	no flow	470553.507		4	34	71		Thompson
T41	47.38	T47.380	trib from Lost Lake	470558.254		1	35	71	70	Thompson
T40	47.59	T47.590	trib trickle flow near Lost Lake	470607.344		1	36	70	67	Thompson
T39	48.01	T48.010	intermittent, tiny trickle of flow from pond	470627.050		3	37	70	59	Thompson
PBL4	48.21		Carrol Truck Trail (Doc Barney's)	470656.900		4	32	65		Thompson
136	48.23	148.230	30 yards long, just down stream from Rosalyn Kelly Campsite	470635.971		3	39	70		Thompson
PBL5	48.30		Doc Barneys	470701.746		3	65	70		Thompson
135	48.32	148.320	small island just upstream from Rosalyn Kelly Campsite	470640.124		3	66	70		Thompson
T31	48.37	T48.370	trib	470705.100		10	61	65	68	Thompson
L21	48.47	L48.470	active beaver lodge	470648.129		4	38	70		Thompson
T30	48.48	T48.480	trib	470709.900		6	40	65	64	Thompson
T29	48.73	T48.730	small beaver dam at mouth	470721.061		6	29	65	63	Thompson
T28	48.94	T48.940	trib with flow	470716.880		8	33	65	60	Thompson
117	49.04	149.040	large island with large trees	470722.555		5	33	65		Thompson
T32	49.30	T49.300	trib	470734.614		4	39	65	65	Boulder Lake NE
L7	50.17	L50.170	small active beaver lodge	470805.013		. 11	34	66		Boulder Lake NE
T27	50.42	T54.420	trib with flow	470813.270		4	40	66	59	Boulder Lake NE
T26	50.91	T50.910	wetland drainage with active dam	470828.553		2	114	67	65	Boulder Lake NE
T25	51.27	T51.270	trib with beaver dam	470820.706		4	35	66	67	Boulder Lake NE
T24	51.54	T51.540	trib	470829.346		3	32	66	66	Boulder Lake NE
T23	51.86	T51.860	trib with flow	470831.049		4	41	66	59	Boulder Lake NE
E26	52.30	E52.300	erosion site	470843.072		5	19	66		Boulder Lake NE
T22	53.09	T53.090	trib with beaver dam at mouth and some flow	470901.700		7	25	66	65	Boulder Lake NE
E25	53.19	E53.190	large erosion site	470906.600		5	20	66		Boulder Lake NE
T21	53.25	T53.250	trib with noticeable flow	470908.800		5	46	66	66	Boulder Lake NE
E24	53.71	E53.710	long erosion site	470909.700		3	24	66	00	Pequaywan Lake
T20	53.94	T53.940	trib	470915.100		2	52	66	66	Pequaywan Lake
E16	54.11	E54.110	erosion site	470923.626		2	42	65		Pequaywan Lake
E15	54.24	E54.240	large erosion site with trees	470929.542		2	37	65		Pequaywan Lake
E23	54.72	E54.720	erosion site	470944.191		1	42	65		Pequaywan Lake
114	54.85	154.850	island	470944.382		5	44	65		Pequaywan Lake
T19	55.31	T55.310	trib	471005.223		5	42	65	55	Pequaywan Lake
L6	55.35	L55.350	active beaver lodge	471006.469		6	46	65		Pequaywan Lake
L5	55.40	L55.400	active beaver lodge	471008.042		3	26	65		Pequaywan Lake
T18	55.48	T55.480	trib from Marion Lake, ATV trail crosses creek bed	471000.042		4	45	65	69	Pequaywan Lake
113	55.51	155.510	island in front of Marion Lake	471010.010		4	43	65	55	Pequaywan Lake
	55.51	100.010		111011.000	0.000.024	-	U	00		. oquuy muni Euko

Pequaywan La	Pequaywan La	Pequaywan La	Pequaywan La	Pequaywan La	Pequaywan La	Pequaywan La	Pequaywan La	Pequaywan La	Pequaywan La	Pequaywan La	Pequaywan La	Pequaywan La	Pequaywan La	Pequaywan La	Pequaywan La	Pequaywan La	Pequaywan La	Pequaywan La	Pequaywan La	Pequaywan La	Pequaywan La	Pequaywan La	Pequaywan La	Pequaywan La	Pequaywan La	Pequaywan La	Pequaywan La	Fairbanks	Fairbanks	Fairbanks	Fairbanks	Fairbanks	Fairbanks	Fairbanks	Brimson	Brimson	Brimson	Brimson	Brimson	Brimson	Brimson	Brimson	Brimson	Brimson	Brimson	
	61		64	62	63			58			63	62								57					58			51	58					60	60									L	61	
64	64	64	64	63	63	63	63	63	63	63	63	63	63	63	63	63	63	59	59	63	59	59	59	59	59	59	59	59	59	59	60	60	60	60	60	60	61	60	61	61	61	61	61	61	61	
27	52	38	48	35	24	35	24	38	21	31	29	32	22	23	31	38	25	31	38	33	18	22	22	27	24	20	15	20	20	15	15	15	23	27	15	21	17	12	15	20	12	15	12	10	11	
2	з	2	3	2	e	e	7	e	4	9	3	e	ŝ	e	e	2	9	ŝ	6	e	4	9	5	2	2	2	4	4	2	9	4	4	4	е	5	2	4	7	4	5	4	3	5	2	4	
471021.40 915836.65	471014.92(3915804.10:3	471024.52(3915742.070)	471031.263915724.296	471058.11 7915706.939	471110.41.8915712.38	471113.746915712.34	471115.79 915658.10	471122.840915703.710	471121.08 915700.852	471143.75(3915643.66(5	471153.40.3915640.69	471204.710915631.253	471213.602915640.26	471217.71(915644.44()	471219.300915644.700	471219.90(915642.97:)	471228.98.915623.389		471314.07 915525.51	471228.91.2915626.15	471334.69.2915416.93	471338.29.915407.12	471341.500915416.900	471344.349915405.130	471405.68:2915423.85	471439.200915403.800	471454.400915329.800	471513.120915307.428	471500.86:3915257.700	471503.35/3915253.39()	471501.843915246.113	471500.800915239.300	471506.142915241.090	471507.889915240.77	471520.504915209.163	471522.723915207.239	471522.700915202.200	471523.529915202.62	471525.21 915202.04:3	471527.272915203.500	471539.98(3915146.440)	471542.19:3915148.60:3	471544.429915150.540	471547.56 3915144.46:)	471549.483915149.290	
L55.780	T56.300 wetland drainage, beaver dam 20' up from mouth	T56.640 intermittent drainage	T56.990 trib with flow		T57.88 wetlands drainage	157.940 large island with trees	E58.190 erosion site, 135 yards long	T58.360 wetlands drainage	E58.400 80 yards long	NS59.05@nesting box	T59.250 trib with flow from beaver pond	T59.300 trib	E 59.550 erosion site	E 59.580 erosion site	T59.590 unnamed perennial	159.600 large island with trees	159.760 40 yds x 10 yds, 2 islands	PBL59.80 Cedar Bay access (Bear Lake Road)	E 60.820 erosion site	T60.920 wetlands drainage	E62.620 35 yards long	E62.840 erosion site 69 yards long	E62.990 erosion site 50 yards long	E63.160 erosion site 115 yards long	T63.770 West Branch Cloquet River	T64.840 unnamed perennial, short trib from small pond/lake	E 65.460 erosion site 20 yards long	T65.900 trib with good flow	T66.390 intermittent flow		E66.660 erosion site 70 yards long	T66.740 Pine Creek, strong flow	E66.880 erosion site 117 yards long	T66.910 back water	T67.400 trib	E67.450 erosion site 50 yards long	E67.580 erosion site 100 yards long, just below PBL2	PBL67.60 accessed from CR 44, dirt road with "Bridge Out" sign	E67.630 erosion site	E67.670 erosion site 120 yards long	E68.240 erosion site 40 yards long	E68.280 erosion site	L68.330 inactive beaver lodge	L68.450 active beaver lodge	T68.580 trip from Papoose Lake	
H	ŀ	-	F	⊢	┝	┝	⊢	⊢	⊢	H	⊢	⊢	-	-	-	-					-	-	H	⊢	⊢	H	⊢	ŀ	⊢	⊢	⊢	⊢	⊢	H	⊢	⊢	-	1	⊢	⊢	⊢	⊢	⊢	⊢	┝	
55.78	56.30	56.64	56.99	57.63	57.88	57.94	58.19	58.36	58.40	59.05	59.25	59.30	59.55	59.58	59.59	59.60	59.76	3 59.80	60.82	60.92	62.62	62.84	62.99	63.16	63.77	64.84	65.46	65.90	66.39	66.48	66.66	66.74	66.88	66.91	67.40	67.45	67.58	2 67.60	67.63	67.67	68.24	68.28	68.33	68.45	68.58	
L2	Τ17	T16	T15	T14	T13	112	E22	Τ12	E21	Z S S	T11	Τ10	E20	E 19	T33	11	110	PBL	E 18	Т9	E17	E 16	E 15	E 14	Τ7	Т8	Е12	T6	Т5	Ш11	Ε10	14	6 U	Т3	Τ2	Е 8	Eч	PBL	9 E	ШQ	ШЗ	Ш	۲ 4	L3	F	

Appendix 2. List of benthic macroinvertebrates collected from the Cloquet River, 2001. Families are listed, with numbers being the total number observed at each sampling station. The total observed in riffle and run collections is listed separately.

Totals fo	r RS1		Totals for	RS2	
Taxonomic Classification	Total	Total Riffle / Run	Taxonomic Classification	Total	Total Riffle / Run
Bivalves	1	1	Coleoptera Dytiscidae	3	
Coleoptera Elmidae	8	5	Coleoptera Halipidae	2	
Diptera Athericidae	1	1	Coleoptera Psephenidae	1	1
Diptera Ceratopogonidae	2	2	Crustacea Amphipoda	25	
Diptera Nematocera Chironomidae	11	4	Diptera Nematocera Chironomidae	18	12
Diptera Simuliidae	6	6	Diptera Simuliidae	6	6
Diptera Tipulidae	4	4	Diptera Thaumaleidae	4	4
Ephemeroptera Baetidae	1	1	Diptera Tipulidae	1	1
Ephemeroptera Ephemerellidae	4		Ephemeroptera Baetidae	50	50
Ephemeroptera Heptageniidae	21	13	Ephemeroptera Heptageniidae	42	30
Ephemeroptera Leptophlebiidae	5	1	Ephemeroptera Leptophlebiidae	8	8
Ephemeroptera Oligoneuriidae	2	2	Ephemeroptera Polymitarcyidae	4	4
Gastropoda	8	8	Ephemeroptera Tricorythidae	121	33
Odonata Anisoptera Aeshnidae	2	2	Megaloptera Corydalidae	4	4
Odonata Cordulegastridae	5	5	Megaloptera Sialidae	1	1
Odonata Gomphidae	20	16	Odonata Anisoptera Aeshnidae	1	1
Plecoptera Capniidae	12	12	Odonata Anisoptera Corduliidae libellulidae	4	4
Plecoptera Perlidae	12	12	Odonata Gomphidae	9	8
Plecoptera Perlodidae	10	9	Plecoptera Perlidae	1	1
Trichoptera Hydropsychidae	156	141	Plecoptera Perlodidae	3	1
Trichoptera Hydroptilidae	1	1	Trichoptera Hydropsychidae	31	23
Trichoptera Lepidostomatidae	1	1	Trichoptera Polycentropodidae	1	1
Trichoptera Polycentropodidae	12	12	Trichoptera Psychomyiidae	12	12
Trichoptera Psychomyiidae	22	2	Trichoptera Rhyacophilidae	17	17
Total # Organisms Observed	327	261	Total # Organisms Observed	352	205

Totals	for RS3		Totals for	·RS4	
Taxonomic Classification	Total Total Riffle / Run		Taxonomic Classification	Total	Total Riffle / Run
	1000				
Annelida Hirudinea	1		Amphipoda Hyalella	19	2
Bivalves	8	8	Coleoptera Dryopidae	3	3
Coleoptera Elmidae	3	3	Crustacea Decapoda		lots
Coleoptera Psephenidae	1		Diptera Empididae	1	1
Diptera Athericidae	1	1	Diptera Nematocera Chironomidae	32	27
Diptera Nematocera Chironomidae	9	9	Diptera Simuliidae	44	33
Diptera Simuliidae	9	8	Diptera Stratimyidae	1	
Diptera Thaumaleidae	1		Diptera Tipulidae	2	1
Diptera Tipulidae	1	1	Ephemeroptera Baetidae	3	2
Ephemeroptera Baetidae	2		Ephemeroptera Baetiscidae	1	
Ephemeroptera Ephemerellidae	1		Ephemeroptera Ephemerellidae	34	10
Ephemeroptera Ephemeridae	7	7	Ephemeroptera Heptageniidae	12	11
Ephemeroptera Heptageniidae	19	15	Ephemeroptera Leptophilebiidae	17	17
Ephemeroptera Leptophlebiidae	6	6	Ephemeroptera Spp.	4	4
Ephemeroptera Oligoneuriidae	6	4	Megaloptera Corydalidae	5	5
Ephemeroptera Tricorythidae	53	53	Megaloptera Nigronia	2	
Gastropoda	10		Odonata Anisoptera	5	
Megaloptera Corydalidae	7	7	Odonata Coenagrionidae	1	1
Odonata Anisoptera Aeshnidae	4	4	Odonata Gomphidae	10	10
Odonata Anisoptera Corduliidae	2		Plecoptera Perlidae	6	6
Odonata Gomphidae	11	11	Plecoptera Perlodidae	2	
Plecoptera Adult	1	1	Plecoptera Spp.	1	1
Plecoptera Perlidae	20	20	Trichoptera Hydropsychidae	30	30
Plecoptera Perlodidae	17	17	Trichoptera Hydroptilidae	1	1
Plecoptera Pteronarcyidae	8	7	Trichoptera Leptoceridae	14	-
Trichoptera Cases (empty)	57	57	Trichoptera Philopotamidae	8	7
Trichoptera Glossosomatidae	25	24	Trichoptera Polycentropodidae	2	,
Trichoptera Helicopsychidae	1	1	Trichoptera Psychomyiidae	13	13
Trichoptera Hydropsychidae	50	44	Trichoptera Spp.	8	8
Trichoptera Hydropsychiade	6	2	Thenopiera spp.	0	0
Trichoptera Leptoceridae	4	4	Total # Organisms Observed	281	193
Trichoptera Limnephilidae	10	4	1 otai # Of gamsins Observed	201	175
Trichoptera Polycentropodidae	10	6			
Trichoptera Polycentropoalade Trichoptera Psychomyiidae	2	2			
Inchopiera Esychomyliade	2	<u> </u>			
TOTAL # Organisms Observed	380	332			

Appendix 2. Continued.						
Totals for RS 5						
Taxonomic Classification	Total	Total Riffle / Run				
Annelida Hirudinae	1	1				
Bivalves	11	11				
Coleoptera Elmidae	9	9				
Coleoptera Gyrinidae	2	2				
Crustacea Amphipoda Gammaridae	3	3				
Diptera Athericidae	1	1				
Diptera Nematocera Chironomidae	10	7				
Diptera Tipulidae	1	1				
Ephemeroptera Baetidae	2	2				
Ephemeroptera Caenidae	1	1				
Ephemeroptera Ephemerellidae	7	7				
Ephemeroptera Ephemeridae	5	5				
Ephemeroptera Heptageniidae	16	15				
Ephemeroptera Potamanthidae	1	1				
Ephemeroptera Tricorythidae	3	3				
Gastropoda	6	6				
Hemiptera Nepidae	1	1				
Megaloptera Corydalidae	1					
Odonata Anisoptera Aeshnidae	2	2				
Odonata Gomphidae	6	3				
Odonata Libellulidae	1	1				
Plecoptera Peltoperlidae	4					
Plecoptera Perlidae	2	2				
Plecoptera Pteronarcyidae	9	8				
Trichoptera Cases (empty)	23	23				
Trichoptera Glossosomatidae	2	2				
Trichoptera Hydropsychidae	30	23				
Trichoptera Hydroptilidae	2	2				
Trichoptera Polycentropodidae	23	23				
Trichoptera Psychomyiidae	1	1				
Trichoptera Sericostomatidae	1	1				
Total # Organisms Observed	187	167				